Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. 1992

B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.

There are an estimated 2 million cases of salmonellosis in the United States every year. Unlike the incidence of many infectious diseases, the incidence of salmonellosis in the United States and other developed countries has been rising steadily over the past 30 years, and the disease now accounts for 10 to 15% of all cases of acute gastroenteritis in the United States. The infecting organism is ingested and must traverse the intestinal epithelium to reach its preferred site for multiplication, the reticuloendothelial system. Despite several recent studies, the genetic basis of the invasion process is poorly understood. An emerging theme from these studies is that wild-type Salmonella organisms probably have several chromosomal loci that are required for the most efficient level of invasion. In this study, we have identified and characterized 13 TnphoA insertion mutants of Salmonella enteritidis CDC5 that exhibit altered invasion phenotypes. The mutants were identified by screening a bank of TnphoA insertions in S. enteritidis CDC5str for their invasion phenotype in three tissue culture cell lines (HEp-2, CHO, and MDCK). These 13 mutants were separated into six classes based on their invasive phenotypes in the tissue culture cell lines. Several mutants were defective for entry of some cell lines but not for others, while two mutants (SM6 and SM7) were defective for entry into all three tissue culture cell lines. This suggests that Salmonella spp. may express more than one invasion pathway. Southern analysis and chromosomal mapping indicated that as many as nine chromosomal loci may contribute to the invasion phenotype. It is becoming clear that the invasive phenotype of Salmonella spp. is multifactorial and more complex than that of some other invasive members of the family Enterobacteriaceae.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001422 Bacterial Adhesion Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity. Adhesion, Bacterial,Adhesions, Bacterial,Bacterial Adhesions
D012477 Salmonella enteritidis A serotype of Salmonella enterica which is an etiologic agent of gastroenteritis in man and other animals. Salmonella enterica serovar enteritidis

Related Publications

B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
February 2002, Life sciences,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
June 1991, Cell,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
June 2008, FEMS immunology and medical microbiology,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
June 1992, Infectious agents and disease,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
September 2002, Molecular microbiology,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
September 2002, Infection and immunity,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
September 2007, Cellular microbiology,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
January 1998, Japanese journal of medical science & biology,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
July 1997, Molecular microbiology,
B J Stone, and C M Garcia, and J L Badger, and T Hassett, and R I Smith, and V L Miller
June 2000, Microbiology (Reading, England),
Copied contents to your clipboard!