Association of phosphorylated insulin-like growth factor-I receptor with the SH2 domains of phosphatidylinositol 3-kinase p85. 1992

K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
Division of Cell Biology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709.

Insulin-like growth factor-I (IGF-I) stimulates the production of 3-inositides and markedly increases the phosphatidylinositol 3-kinase activity that is immunoprecipitated by anti-phosphotyrosine antibodies, a portion of which is also associated with the IGF-I receptor. In this study, recombinant p85, the regulatory subunit of phosphatidylinositol 3-kinase, and fusion proteins containing various subdomains were used to investigate the association of p85 with the IGF-I receptor and to demonstrate that p85 is a direct in vitro substrate of the IGF-I receptor kinase. Solubilized IGF-I receptor was immobilized on antireceptor antibody-agarose beads. Following in vitro receptor phosphorylation and incubation with cell lysate, immobilized receptor became associated with phosphatidylinositol 3-kinase activity and with protein bands with molecular masses of 85 and 110 kDa, which correspond to the known molecular masses of the subunits of phosphatidylinositol 3-kinase. These associations were inhibited by the addition of recombinant intact p85 or SH2-containing fusion proteins, but not by fusion proteins containing its SH3 domain or breakpoint cluster homology region. A fusion protein containing the SH2 domains of Ras GTPase-activating protein also inhibited the association of phosphatidylinositol 3-kinase activity with immobilized IGF-I receptor, although less effectively than p85, whereas a similar construct containing the SH2 domain of pp60src was without effect. When immobilized phosphorylated IGF-I receptor was incubated with intact p85 or the SH2-containing fusion proteins, it became associated with and phosphorylated these proteins. These results demonstrate that at least in vitro, a tight association occurs between phosphorylated IGF-I receptor and phosphatidylinositol 3-kinase, that the region of phosphatidylinositol 3-kinase that contains its SH2 domains is directly involved in this association, and that this region is a direct substrate for IGF-I receptor tyrosine kinase. Furthermore, these results suggest that Ras GTPase-activating protein can also interact with the IGF-I receptor and that different SH2 domain-containing proteins interact with the IGF-I receptor with widely differing affinities.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013002 Somatomedins Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. Sulfation Factor,Somatomedin,Factor, Sulfation

Related Publications

K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
March 1992, Molecular and cellular biology,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
March 1992, Endocrinology,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
March 1996, Biochimica et biophysica acta,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
December 1995, Cell,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
March 1997, Molecular and cellular biology,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
November 1995, International journal of peptide and protein research,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
November 1991, The Journal of biological chemistry,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
June 1994, Biochemical and biophysical research communications,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
June 2008, The Journal of biological chemistry,
K Yamamoto, and D Altschuler, and E Wood, and K Horlick, and S Jacobs, and E G Lapetina
November 1993, Molecular and cellular biology,
Copied contents to your clipboard!