Methemoglobin formation from butylated hydroxyanisole and oxyhemoglobin. Comparison with butylated hydroxytoluene and p-hydroxyanisole. 1992

K Stolze, and H Nohl
Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Austria.

The widely used food additives butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) react with oxyhemoglobin, thereby forming methemoglobin. The reaction rates were measured using visible spectroscopy, and second order rate constants were established for BHA and compared with p-hydroxyanisole. Using ESR we investigated the involvement of free radical reaction intermediates. The expected one-electron oxidation product of BHA and BHT, the phenoxyl radical, could only be detected with pure 3-t-butyl-4-hydroxyanisole and oxyhemoglobin. With the commercial mixture of 2- and 3-t-butyl-4-hydroxyanisole a very strong ESR signal of a secondary free radical species was observed, similar to the one observed earlier with p-hydroxyanisole and dependent on the presence of free thiol groups, so that we assumed the intermediate existence of a perferryl species, the MetHb-H2O2 adduct. In a second series of experiments we investigated the reactivity of this postulated intermediate with BHA and BHT, starting with a pure MetHb/H2O2-phenol mixture in a stopped-flow apparatus linked to the ESR spectrometer, detecting the expected phenoxyl radicals from BHA and p-hydroxyanisole. Due to the low solubility and decreased reactivity of BHT only traces of phenoxyl type radical were found together with a high concentration of unreacted perferryl species. The reactivity of BHA, BHT and p-hydroxyanisole with free thiol groups is demonstrated by an increased reaction rate in the presence of the thiol group blocking substance NEM.

UI MeSH Term Description Entries
D008706 Methemoglobin Ferrihemoglobin
D010108 Oxyhemoglobins A compound formed by the combination of hemoglobin and oxygen. It is a complex in which the oxygen is bound directly to the iron without causing a change from the ferrous to the ferric state. Oxycobalt Hemoglobin,Oxycobalthemoglobin,Oxyhemoglobin,Hemoglobin, Oxycobalt
D002083 Butylated Hydroxyanisole Mixture of 2- and 3-tert-butyl-4-methoxyphenols that is used as an antioxidant in foods, cosmetics, and pharmaceuticals. Butylhydroxyanisole,(1,1-Dimethylethyl)-4-methoxyphenol,AMIF-72,BHA,Butyl Methoxyphenol,Embanox,Nipantiox 1-F,Tenox BHA,AMIF 72,AMIF72,Hydroxyanisole, Butylated,Methoxyphenol, Butyl,Nipantiox 1 F,Nipantiox 1F
D002084 Butylated Hydroxytoluene A di-tert-butyl PHENOL with antioxidant properties. Butylhydroxytoluene,2,6-Bis(1,1-dimethylethyl)-4-methylphenol,2,6-Di-t-butyl-4-methylphenol,2,6-Di-tert-butyl-4-methylphenol,2,6-Di-tert-butyl-p-cresol,4-Methyl-2,6-ditertbutylphenol,BHT,Di-tert-butyl-methylphenol,Dibunol,Ionol,Ionol (BHT),2,6 Di t butyl 4 methylphenol,2,6 Di tert butyl 4 methylphenol,2,6 Di tert butyl p cresol,4 Methyl 2,6 ditertbutylphenol,Di tert butyl methylphenol,Hydroxytoluene, Butylated
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000840 Anisoles A group of compounds that are derivatives of methoxybenzene and contain the general formula R-C7H7O. Methylphenyl Ethers,Ethers, Methylphenyl
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

K Stolze, and H Nohl
February 1975, Journal of the American Oil Chemists' Society,
K Stolze, and H Nohl
December 1980, Journal of pharmaceutical sciences,
K Stolze, and H Nohl
October 1967, Food and cosmetics toxicology,
K Stolze, and H Nohl
October 1988, Toxicology and applied pharmacology,
Copied contents to your clipboard!