Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site. 1992

E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
Department of Physiology, University of Pittsburgh School of Medicine, Pennsylvania 15261.

The putative essential nutrient pyrroloquinoline quinone (PQQ) can efficiently mediate reduction and oxidation reactions in a variety of systems. Therefore, we investigated whether this compound could alter the function of the NMDA receptor via a recently described redox modulatory site. In rat cortical neurons in vitro, 50 microM PQQ could reverse the enhancement of 30 microM NMDA-induced whole-cell ionic currents produced by the reducing agent dithiothreitol (DTT; 2-4 mM). PQQ also depressed native responses in a DTT-reversible fashion. In addition, 50-200 microM PQQ produced a significant degree of neuroprotection in an acute model of NMDA-mediated neurotoxicity in astrocyte-rich cultures of rat cerebral cortex. Under certain conditions, PQQ can lead to the formation of oxygen-derived free radicals, and we have previously observed that these reactive species can oxidize the NMDA receptor. Nevertheless, the enzymatic free radical scavengers superoxide dismutase and catalase (10 micrograms/ml each) did not abolish the actions of PQQ. This observation held true even in astrocyte-poor cortical cultures, where neuronal processes are directly exposed to the extracellular milieu. Therefore, under in vitro conditions in which PQQ is presented without an exogenous electron donor, it appears as if the entire neuroprotective effect of PQQ is attributable to a direct oxidation of the NMDA receptor redox site. These results suggest the possibility of a novel role for PQQ, PQQ-like substances, and quinone-containing proteins in the brain, and may represent a novel therapeutic approach for the amelioration of NMDA receptor-mediated neurotoxic injury.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D015363 Quinolones A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID. Ketoquinoline,Ketoquinolines,Oxoquinoline,Oxoquinolines,Quinolinone,Quinolinones,Quinolone
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
February 1994, Neuroscience letters,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
June 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
August 1989, Journal of neurochemistry,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
January 1994, Journal of neurochemistry,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
January 1990, Synapse (New York, N.Y.),
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
January 1991, Journal of neurochemistry,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
November 1990, The Journal of physiology,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
January 1992, Neuroscience,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
June 1995, Neuropharmacology,
E Aizenman, and K A Hartnett, and C Zhong, and P M Gallop, and P A Rosenberg
November 2002, Neuroreport,
Copied contents to your clipboard!