Physiological effects of 1,25-dihydroxyvitamin D3 in TM4 Sertoli cell line. 1992

V L Akerstrom, and M R Walters
Department of Physiology, Tulane Medical School, New Orleans, Louisiana 70112.

1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] receptors have been previously described in Sertoli cells. This study was performed to assess biological activity of the receptor in the mouse Sertoli cell line TM4. A 2-h preincubation with 0.01-25 nM 1,25(OH)2D3 resulted in a dose-dependent rapid uptake of 45Ca2+ within 5 min of addition of the isotope to the cells (27 +/- 8%, n = 4 experiments; P less than 0.05). This response was specific for 1,25(OH)2D3, in that it was not induced by 25-hydroxyvitamin D3, estradiol, cortisol, R 5020 (promegestone), or testosterone. However, a combination of testosterone and 1,25(OH)2D3 inhibited uptake by 23 +/- 8% (n = 3 experiments, P less than 0.01). That the mechanism responsible for 1,25(OH)2D3-stimulated uptake may involve 1,25(OH)2D3 receptor interaction is supported by the observation that cycloheximide inhibited the response. Conversely, there was no detectable change in uptake by 1,25(OH)2D3-treated cells after 24-h incubation with 0.1-5 nM 1,25(OH)2D3. Increased levels of DNA and protein content also resulted from a 2-h incubation with the steroid and were sustained up to 24 h without a concomitant increase in cell number or a detectable change in cell morphology. The presence of specific 1,25(OH)2D3 receptor-like binding sites was demonstrated by sucrose gradient analysis and hydroxylapatite assay. These data demonstrate that 1,25(OH)2D3 may play an important role in testicular function through regulation of receptor-mediated events.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011397 Promegestone A synthetic progestin which is useful for the study of progestin distribution and progestin tissue receptors, as it is not bound by transcortin and binds to progesterone receptors with a higher association constant than progesterone. 17,21-Dimethyl-19-nor-4,9-pregnadiene-3,20-dione,Promestone,R-5020,R5020,RU-5020,RU5020,Surgestone,R 5020,RU 5020
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002112 Calcifediol The major circulating metabolite of VITAMIN D3. It is produced in the LIVER and is the best indicator of the body's vitamin D stores. It is effective in the treatment of RICKETS and OSTEOMALACIA, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties. 25-Hydroxycholecalciferol,25-Hydroxyvitamin D 3,25-Hydroxycholecalciferol Monohydrate,25-Hydroxyvitamin D3,Calcidiol,Calcifediol Anhydrous,Calcifediol, (3 alpha,5Z,7E)-Isomer,Calcifediol, (3 beta,5E,7E)-Isomer,Calderol,Dedrogyl,Hidroferol,25 Hydroxycholecalciferol,25 Hydroxycholecalciferol Monohydrate,25 Hydroxyvitamin D 3,25 Hydroxyvitamin D3,Anhydrous, Calcifediol,Monohydrate, 25-Hydroxycholecalciferol
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

V L Akerstrom, and M R Walters
July 1995, Current opinion in nephrology and hypertension,
V L Akerstrom, and M R Walters
December 1996, Journal of neuroscience research,
V L Akerstrom, and M R Walters
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
V L Akerstrom, and M R Walters
September 1996, Neuroreport,
V L Akerstrom, and M R Walters
September 1983, The Biochemical journal,
V L Akerstrom, and M R Walters
February 1988, Biochemical and biophysical research communications,
V L Akerstrom, and M R Walters
August 2007, Journal of immunology (Baltimore, Md. : 1950),
V L Akerstrom, and M R Walters
March 1974, Science (New York, N.Y.),
V L Akerstrom, and M R Walters
June 1990, The Journal of biological chemistry,
Copied contents to your clipboard!