X-ray crystal structure of canine myeloperoxidase at 3 A resolution. 1992

J Zeng, and R E Fenna
Department of Biochemistry and Molecular Biology, University of Miami Medical School, FL 33101.

The three-dimensional structure of the enzyme myeloperoxidase has been determined by X-ray crystallography to 3 A resolution. Two heavy atom derivatives were used to phase an initial multiple isomorphous replacement map that was subsequently improved by solvent flattening and non-crystallographic symmetry averaging. Crystallographic refinement gave a final model with an R-factor of 0.257. The root-mean-square deviations from ideality for bond lengths and angles were 0.011 A and 3.8 degrees. Two, apparently identical, halves of the molecule are related by local dyad and covalently linked by a single disulfide bridge. Each half-molecule consists of two polypeptide chains of 108 and 466 amino acid residues, a heme prosthetic group, a bound calcium ion and at least three sites of asparagine-linked glycosylation. There are six additional intra-chain disulfide bonds, five in the large polypeptide and one in the small. A central core region that includes the heme binding site is composed of five alpha-helices. Regions of the larger polypeptide surrounding this core are organized into locally folded domains in which the secondary structure is predominantly alpha-helical with very little organized beta-sheet. A proximal ligand to the heme iron atom has been identified as histidine 336, which is in turn hydrogen-bonded to asparagine 421. On the distal side of the heme, histidine 95 and arginine 239 are likely to participate directly in the catalytic mechanism, in a manner analogous to the distal histidine and arginine of the non-homologous enzyme cytochrome c peroxidase. The site of the covalent linkage to the heme has been tentatively identified as glutamate 242, although the chemical nature of the link remains uncertain. The calcium binding site has been located in a loop comprising residues 168 to 174 together with aspartate 96. Myeloperoxidase is a member of a family of homologous mammalian peroxidases that includes thyroid peroxidase, eosinophil peroxidase and lactoperoxidase. The heme environment, defined by our model for myeloperoxidase, appears to be highly conserved in these four mammalian peroxidases. Furthermore, the conservation of all 12 cysteine residues involved in the six intra-chain disulfide bonds and the calcium binding loop suggests that the three-dimensional structures of members of this gene family are likely to be quite similar.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

J Zeng, and R E Fenna
July 2016, Biopolymers,
J Zeng, and R E Fenna
June 2010, Acta crystallographica. Section D, Biological crystallography,
J Zeng, and R E Fenna
May 1998, The Journal of biological chemistry,
J Zeng, and R E Fenna
March 1984, The Journal of biological chemistry,
J Zeng, and R E Fenna
May 1993, The Journal of biological chemistry,
J Zeng, and R E Fenna
May 1990, Journal of molecular biology,
Copied contents to your clipboard!