Parathyroid hormone enhances calcium current in snail neurones--simulation of the effect by phorbol esters. 1992

P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
A.A. Bogomoletz Institute of Physiology, Ukrainian Academy of Sciences, Kiev.

Effects of parathyroid hormone substance (PTH) on the voltage-activated calcium current (ICa) were studied on intracellularly perfused neurones of the snail, Helix pomatia, under voltage-clamp conditions. Application of 0.1 nM PTH produced a marked potentiation of the current. The effect developed slowly (60-70 min) and remained after removal of PTH. Potentiation could be observed in most neurones, but varied considerably from cell to cell; in some neurones ICa was increased 2- to 3-fold. Addition of ethylenebis(oxonitrilo)tetraacetate (EGTA, 10 mM) to, or removal of adenosine 5'-triphosphate (ATP, 2 mM) from the intracellular perfusing solution resulted in a suppression or attenuation of the potentiating effect. The effect could be reproduced by the synthetic 1-34 amino acid fragment of PTH. Extracellularly applied protein kinase-C (PK-C) activator phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1-10 microM) produced a similar slow increase in ICa (up to 1.5- to 2-fold), while its inactive analogue (4 alpha-phorbol ester) had no effect on ICa. The effects of PTH and PMA were not additive. PK-C inhibitors [1-(5-isoquinoline-sulphonyl)-2-methylpiperazine hydrochloride] (H-7, 100 microM) and staurosporine (100 microM) as well as calcium channel antagonists Cd2+, verapamil, nifedipine and nimodipine depressed the effect of PTH. The chloride channel blocker 4,4'-diisothiocyanato-stilbene-2,2'-disulphonic acid (DIDS, 1 mM) did not affect the potentiating action of PTH. Activation of the adenylate cyclase system also potentiated ICa in some neurones, but this effect had a different time course and was additive to the effect of PTH.2=

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006372 Helix, Snails A genus of chiefly Eurasian and African land snails including the principal edible snails as well as several pests of cultivated plants. Helix (Snails),Snails Helix
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
January 1986, FEBS letters,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
April 1974, Pflugers Archiv : European journal of physiology,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
April 1974, Pflugers Archiv : European journal of physiology,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
September 1988, Brain research,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
March 1984, The Journal of physiology,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
June 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
January 1994, Cell calcium,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
January 1992, Acta biologica Hungarica,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
January 1985, Nature,
P G Kostyuk, and E A Lukyanetz, and A S Ter-Markosyan
May 1989, The Journal of physiology,
Copied contents to your clipboard!