Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. 1992

S P Welch, and D L Stevens
Department of Pharmacology and Toxicology, Medical College of Virginia, Richmond.

The antinociceptive effects of various cannabinoids, alone and in combination with opiates, were evaluated in antinociceptive tests in mice. The cannabinoids tested produce marked antinociceptive effects after i.t. administration to mice. The rank order of potency for the drugs using the tail-flick test was levonantradol greater than CP-55,940 = CP-56,667 greater than 11-hydroxy-delta 9-THC greater than delta 9-THC greater than delta 8-THC; dextronantradol was inactive at a dose of 25 micrograms/mouse. Respective ED50 values in the tail-flick test were 0.4, 12.3, 4.2, 15, 45 and 72 micrograms/mouse. Although pretreatment with morphine somewhat enhanced the effects of delta 9-THC, pretreatment of the mice with naloxone (1 mg/kg s.c. or 1 micrograms/mouse i.t.) failed to block the antinociceptive effects of the cannabinoids, indicating that the cannabinoid-induced antinociception does not occur due to direct interaction with the opiate receptor. Pretreatment of mice with 3.13 micrograms/mouse and 6.25 micrograms/mouse of delta 9-THC shifted the ED50 of morphine to 0.15 and 0.05 micrograms/mouse, respectively (a 4-and a 12-fold shift). The shifts in the dose-response curve of the morphine were parallel. Naloxone administration (1 mg/kg s.c.) completely blocked the antinociceptive effects of the combination of 6.25 micrograms of delta 9-THC with morphine. The AD50 for naloxone blockade of the drug combination was 0.24 (0.06-0.94) mg/kg s.c. and the pA2 was 7.7 (6.7-8.9). The pA2 for naloxone blockade of the dimethylsulfoxide-morphine combination was 6.9 (5.7-8.1).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002186 Cannabinoids Compounds having the cannabinoid structure. They were originally extracted from Cannabis sativa L. The most pharmacologically active constituents are TETRAHYDROCANNABINOL; CANNABINOL; and CANNABIDIOL. Cannabinoid
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000698 Analgesia Methods of PAIN relief that may be used with or in place of ANALGESICS. Analgesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S P Welch, and D L Stevens
January 1990, Methods and findings in experimental and clinical pharmacology,
S P Welch, and D L Stevens
April 1993, Neuroscience letters,
S P Welch, and D L Stevens
July 2000, Journal of ethnopharmacology,
S P Welch, and D L Stevens
September 1977, Anesthesiology,
S P Welch, and D L Stevens
September 1990, Neuropharmacology,
S P Welch, and D L Stevens
March 1991, The Journal of pharmacology and experimental therapeutics,
S P Welch, and D L Stevens
May 2015, Veterinary anaesthesia and analgesia,
Copied contents to your clipboard!