Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. 1992

G S Harris, and S M Michalek, and R Curtiss
Department of Biology, Washington University, St. Louis, Missouri 63130.

The streptococcal transposon Tn916 (Tcr) was used to isolate mutants of Streptococcus mutans altered in glycogen accumulation to investigate whether glycogenlike intracellular polysaccharides (IPS) play an important role in S. mutans-induced caries formation. S. mutans UA130 (serotype c) was transformed with the Escherichia coli plasmid pAM620 (Tn916), and the resultant transposon libraries were screened for glycogen content by iodine staining. A transposon mutant, designated SMS201, demonstrated a glycogen-deficient phenotype on glucose-enriched medium. Quantitative electron microscopy confirmed that IPS concentrations were significantly reduced in SMS201 relative to the wild-type progenitor strain, UA130. Importantly, reversion to wild type correlated at all times with loss of the transposon. Transposon excisants were used to facilitate cloning of the streptococcal gene(s) involved in glycogen biosynthesis and storage. A 2.1-kb chromosomal determinant (glgR) which encodes a putative regulator of S. mutans glycogen accumulation was isolated. A stable deletion mutation (delta glgR) was subsequently generated in E. coli and introduced into S. mutans by allelic exchange. The resultant glycogen synthesis-deficient mutant, SMS203, demonstrated a significantly reduced cariogenic potential (P less than 0.01) on the buccal, sulcal, and proximal surfaces of teeth in germfree rats, relative to animals challenged with the glycogen synthesis-proficient progenitor strain, UA130. These observations confirm previous reports (J. M. Tanzer, M. L. Freedman, F. N. Woodiel, R. L. Eifert, and L. A. Rinehimer, p. 597-616, in H. M. Stiles, W. J. Loesche, and T. L. O'Brien, ed., Proceedings in Microbiology. Aspects of Dental Caries. Special Supplement to Microbiology Abstracts, vol. 3, 1976) which implicate IPS as significant contributors to the S. mutans cariogenic process.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006003 Glycogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013295 Streptococcus mutans A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.

Related Publications

G S Harris, and S M Michalek, and R Curtiss
January 1978, Caries research,
G S Harris, and S M Michalek, and R Curtiss
April 1999, Journal of bacteriology,
G S Harris, and S M Michalek, and R Curtiss
January 1980, Infection and immunity,
G S Harris, and S M Michalek, and R Curtiss
December 2009, Journal of bacteriology,
G S Harris, and S M Michalek, and R Curtiss
April 1983, Canadian journal of microbiology,
G S Harris, and S M Michalek, and R Curtiss
November 1975, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G S Harris, and S M Michalek, and R Curtiss
March 1999, Infection and immunity,
G S Harris, and S M Michalek, and R Curtiss
January 2016, Applied microbiology and biotechnology,
Copied contents to your clipboard!