The vaccinia virus mRNA (guanine-N7-)-methyltransferase requires both subunits of the mRNA capping enzyme for activity. 1992

M A Higman, and N Bourgeois, and E G Niles
Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214.

Plasmid vectors capable of expressing the large and small subunits of the vaccinia virus mRNA capping enzyme were constructed and used to transform Escherichia coli. Conditions for the induction of the dimeric enzyme or the individual subunits in a soluble form were identified, and the capping enzyme was purified to near homogeneity. Proteolysis of the capping enzyme in bacteria yields a 60-kDa product shown previously to possess the mRNA triphosphatase and guanyltransferase activities (Shuman, S. (1990) J. Biol. Chem. 265, 11960-11966) was isolated and shown by amino acid sequence analysis to be derived from the NH2 terminus of D1R. The individual subunits lacked methyltransferase activity when assayed alone. However, mixing the D1R and D12L subunits permitted reconstitution of the methyltransferase activity, and this appearance in activity accompanied the association of the subunits. In contrast, mixing the D12L subunit with the D1R-60K proteolytic fragment failed to yield methyltransferase activity or result in a physical association of the two proteins. These results demonstrate that the methyltransferase active site requires the presence of the D12L subunit with the carboxyl-terminal portion of the D1R subunit. Furthermore, since the mRNA triphosphatase and guanyltransferase active sites reside in the NH2-terminal domain of the D1R subunit, and the methyltransferase activity is found in the carboxyl-terminal portion of this subunit and D12L, there must be at least two separate active sites in this enzyme.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning

Related Publications

M A Higman, and N Bourgeois, and E G Niles
April 2008, RNA (New York, N.Y.),
M A Higman, and N Bourgeois, and E G Niles
August 1992, The Journal of biological chemistry,
M A Higman, and N Bourgeois, and E G Niles
July 1990, The Journal of biological chemistry,
M A Higman, and N Bourgeois, and E G Niles
September 2020, Chemistry (Weinheim an der Bergstrasse, Germany),
M A Higman, and N Bourgeois, and E G Niles
February 2024, Scientific reports,
M A Higman, and N Bourgeois, and E G Niles
January 2004, Molecular cell,
Copied contents to your clipboard!