Interaction between opioid antagonists and amphetamine: evidence for mediation by central delta opioid receptors. 1992

D N Jones, and S G Holtzman
Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia.

Naloxone, the opioid receptor antagonist, attenuates the effects of amphetamine in a wide range of behavioral paradigms. To determine the role of the opioid receptor subtypes in this phenomenon, subtype-selective opioid receptor antagonists were administered intracisternally to rats either as a 15-min [naloxone methiodide (NX.M) and naltrindole (NTI)] or a 24-hr [beta-funaltrexamine (beta-FNA) and norbinaltorphimine (nBNI)] pretreatment. Cumulative dose-response curves to amphetamine were constructed (saline, 0.1, 0.4, 1.6 and 6.4 mg/kg s.c.) with dosing every 30 min. Motor activity (gross and fine movements) was recorded for 20 min, commencing 10 min postinjection. Amphetamine dose-dependently increased both fine and gross movements. NX.M (30 micrograms) and NTI (10 and 30 micrograms) attenuated the gross activity response to amphetamine but did not alter the increase in fine movements. Lower doses of NX.M (2.0 and 10 micrograms) potentiated the fine activity response to amphetamine without any effect on the gross movements. Pretreatment with beta-FNA (1.25-20 micrograms), nBNI (10 and 30 micrograms) or NX.M (5.0 mg/kg s.c.) did not influence the response to amphetamine. However, beta-FNA and nBNI blocked the antinociceptive effects of morphine and spiradoline, respectively, indicating that these antagonists were tested under appropriate conditions for opioid receptor blockade. These data indicate a central site of action for the opioid antagonist-amphetamine interaction. The ability of NX.M (i.c.) and NTI, but not beta-FNA or nBNI, to influence the motor activity response to amphetamine implicates delta receptors in the opioid-mediated modulation of the behavioral stimulant effects of amphetamine.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008297 Male Males
D009019 Morphinans Compounds based on a partially saturated iminoethanophenanthrene, which can be described as ethylimino-bridged benzo-decahydronaphthalenes. They include some of the OPIOIDS found in PAPAVER that are used as ANALGESICS. Morphinan
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

D N Jones, and S G Holtzman
January 1983, Life sciences,
D N Jones, and S G Holtzman
July 1986, European journal of pharmacology,
D N Jones, and S G Holtzman
October 1977, Psychopharmacology,
D N Jones, and S G Holtzman
November 2004, Clinical and experimental pharmacology & physiology,
D N Jones, and S G Holtzman
January 2001, European journal of pain (London, England),
Copied contents to your clipboard!