Acute effects of sigma ligands on the electrophysiological activity of rat nigrostriatal and mesoaccumbal dopaminergic neurons. 1992

J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201.

The effects of acute i.v. administration of several sigma ligands on the single-unit activity of nigrostriatal and mesoaccumbal dopaminergic (DA) neurons were evaluated in chloral hydrate-anesthetized rats. DTG (1,3-di(o-tolyl)guanidine) did not alter DA neuronal activity at nontoxic doses and JO 1784 [(+)-N-cyclopropylmethyl-N-methyl-1,4-diphenyl-1-ethylbut-3-en-1-+ ++ylamine] was inactive. (+)-Pentazocine was more effective in increasing mesoaccumbal vs. nigrostriatal DA cell firing rates. BMY 14802(alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine-but anol) dose-dependently increased DA cell firing rate in both populations. The inhibition of nigrostriatal DA cell firing rate by (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [(+)-3-PPP] was reversed by (-)-eticlopride and (+)-but not (-)-butaclamol, which supports previous evidence that (+)-3-PPP-induced inhibition is due to the DA agonist properties of the drug. From what is known of the pharmacological properties of these compounds, it is concluded that acute sigma receptor occupation does not markedly alter the firing rate of DA neurons. The dose-response curve for inhibition of nigrostriatal DA neuronal activity by the D2 DA agonist, quinpirole, was shifted to the right tenfold by BMY 14802 pretreatment (8 mg/kg, i.v.) and twofold by (+)-pentazocine (8 mg/kg, i.v.), but was not changed by DTG (2 mg/kg, i.v.). It is concluded that the marked effects of certain sigma ligands on DA cell electrophysiology are likely due to their non-sigma properties.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011699 Putamen The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS. Nucleus Putamen,Nucleus Putamens,Putamen, Nucleus,Putamens,Putamens, Nucleus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
January 1988, Brain research,
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
October 1993, Brain research,
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
February 1981, The Journal of pharmacology and experimental therapeutics,
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
January 1989, Synapse (New York, N.Y.),
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
June 1990, Brain research. Developmental brain research,
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
January 1992, Brain research bulletin,
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
January 1980, Advances in biochemical psychopharmacology,
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
March 1983, The Journal of pharmacology and experimental therapeutics,
J Zhang, and L A Chiodo, and J G Wettstein, and J L Junien, and A S Freeman
June 1990, Brain research,
Copied contents to your clipboard!