An inward rectifier is present in presynaptic nerve terminals in the chick ciliary ganglion. 1992

G H Fletcher, and V A Chiappinelli
Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO 63104.

Inwardly rectifying voltage-sensitive channels have been detected in the cell bodies and axons of a number of excitable cells. The question of whether similar channels exist at axon terminals has been a matter of speculation for some time. We now report the first direct evidence for the existence of inward rectifiers in vertebrate presynaptic nerve terminals. Following impalement with intracellular electrodes, the large calyciform nerve terminals innervating chick ciliary ganglion neurons exhibit pronounced inward rectification upon hyperpolarization that increases with increasing current strength. The response is blocked by 2 mM Cs+, but is insensitive to Ba2+, tetraethylammonium and tetrodotoxin. The inward rectifier exhibits dependence on both Na+ and K+, but is unaffected by altering extracellular Ca2+. Ciliary neurons innervated by these nerve terminals display inward rectification with similar properties. We conclude that the inward rectifier present in these presynaptic nerve terminals resembles the H-current previously described in sensory ganglion neurons and the Q-current found in hippocampal pyramidal neurons. The presence of channels that are activated by hyperpolarization may serve to enhance the excitability of the calyciform nerve terminals, which are capable of relatively high frequencies (greater than 100 Hz) of discharge.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome

Related Publications

G H Fletcher, and V A Chiappinelli
December 1993, Annals of the New York Academy of Sciences,
G H Fletcher, and V A Chiappinelli
September 1990, The Journal of physiology,
G H Fletcher, and V A Chiappinelli
October 1989, Neuroscience letters,
G H Fletcher, and V A Chiappinelli
December 1989, Brain research,
G H Fletcher, and V A Chiappinelli
January 1991, Annals of the New York Academy of Sciences,
G H Fletcher, and V A Chiappinelli
July 1959, The Journal of pharmacology and experimental therapeutics,
G H Fletcher, and V A Chiappinelli
March 1972, The Journal of physiology,
Copied contents to your clipboard!