Wallerian degeneration in human nerves: serial electrophysiological studies. 1992

V Chaudhry, and D R Cornblath
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

After nerve transection, the distal stump undergoes Wallerian degeneration (WD). Little information is available concerning sequential changes in nerve conduction measurements during WD in humans. Five patients with nerve injuries were studied temporally. Motor-evoked amplitudes were reduced by 50% at 3 to 5 days after injury; the response was absent by day 9. Sensory-evoked amplitudes were reduced by 50% at 7 days after injury; the response was absent by day 11. Sensory and motor nerves with shorter distal stumps showed earlier loss of amplitude than did those with longer distal stumps. Denervation potentials were seen 10 to 14 days after injury. Our results suggest that WD occurs earlier if the distal stump is shorter, and that motor-evoked responses are affected earlier than sensory-evoked responses. The time-lag between the loss of the motor-evoked response and the appearance of denervation potentials, the latter coinciding with reduction of sensory evoked responses, suggests that failure of neuromuscular transmission precedes axonal loss during WD.

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

V Chaudhry, and D R Cornblath
September 1971, The Proceedings of the Institute of Medicine of Chicago,
V Chaudhry, and D R Cornblath
January 1969, Acta neurologica,
V Chaudhry, and D R Cornblath
January 1959, Progress in neurobiology,
V Chaudhry, and D R Cornblath
May 1960, Journal of neurochemistry,
V Chaudhry, and D R Cornblath
October 1958, Bollettino della Societa italiana di biologia sperimentale,
V Chaudhry, and D R Cornblath
February 1981, Experimental neurology,
V Chaudhry, and D R Cornblath
January 1960, Acta morphologica Neerlando-Scandinavica,
V Chaudhry, and D R Cornblath
October 1970, The Journal of comparative neurology,
V Chaudhry, and D R Cornblath
January 1988, Zeitschrift fur mikroskopisch-anatomische Forschung,
Copied contents to your clipboard!