Endothelin regulation of neuropeptide release from nerve endings of the posterior pituitary. 1992

M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
Centre National de la Recherche Scientifique, Strasbourg, France.

We have investigated the role of endothelin (ET) in the stimulus-secretion coupling mechanism in the posterior pituitary. We report that isolated nerve endings contain immunoreactive endothelin, the level of which is regulated by homeostatic mechanisms involved in control of water balance. ET-1 and ET-3 potentiate vasopressin release induced by depolarization through interaction with specific receptors of the ETA subtype and this response is antagonized by sarafotoxin S6b. The second messenger for this effect, however, remains unknown since the potentiation of depolarization-induced vasopressin release occurs in the absence of an increase in cellular calcium.

UI MeSH Term Description Entries
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D014757 Viper Venoms Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins. Russell Viper Venom,Russell Viper Venoms,Russell's Viper Venom,Russell's Viper Venoms,Viperidae Venoms,Cerastes Venom,Cerastes Venoms,Egyptian Sand Viper Venom,Viper Venom,Viperotoxin,Russells Viper Venom,Russells Viper Venoms,Venom, Cerastes,Venom, Russell Viper,Venom, Russell's Viper,Venom, Viper,Venoms, Cerastes,Venoms, Russell Viper,Venoms, Russell's Viper,Venoms, Viper,Venoms, Viperidae,Viper Venom, Russell,Viper Venom, Russell's,Viper Venoms, Russell,Viper Venoms, Russell's
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016232 Endothelins 21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides. Endothelium-Derived Vasoconstrictor Factors,Endothelin,Vasoconstrictor Factors, Endothelium-Derived

Related Publications

M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
September 1990, Regulatory peptides,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
January 1998, Neuroscience,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
February 1984, Journal of neurochemistry,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
June 1965, The Journal of cell biology,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
June 2009, British journal of pharmacology,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
October 2023, Biochimica et biophysica acta. Biomembranes,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
September 1960, British journal of pharmacology and chemotherapy,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
January 1976, Advances in experimental medicine and biology,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
January 1976, Nature,
M F Ritz, and E L Stuenkel, and G Dayanithi, and R Jones, and J J Nordmann
January 1980, Neuroscience,
Copied contents to your clipboard!