Evaluation of neural fold fusion and coincident initiation of spinal cord occlusion in the chick embryo. 1992

M E Desmond, and M C Field
Department of Biology, Villanova University, Pennsylvania 19085.

Although it is known that rapid expansion of the vertebrate brain begins near the time that the spinal neurocoel is occluded, it still remains unknown when occlusion occurs in relation to neurulation. Since both morphogenetic events are critical for normal brain growth, it is important to decipher the temporal relationship between the two processes. This study assessed the temporal relationship of the two events with the rationale that if it could be demonstrated that occlusion occurs coincident with the completion of neurulation, then it could be argued that factors shown to direct neurulation could also initiate occlusion. Nearly 600 chick embryos (stages 9- through 12+) were cultured atop egg-agar, the caudal extent of neurulation determined, the cranial five pairs of somites removed and the neurocoels assessed for occlusion. In stage 9- through 10- chicks, neurulation of the spinal cord is incomplete. Stages 10 through 12+ exhibit neurulation and occlusion from the 8th to 19th somites. When lateral tissues were removed in embryos 8 through 10-, the neural folds became dysraphic whereas in embryos stage 10 and older, the folds remained fused dorsomedially and occluded. The only surgical manipulation that was found to prevent occlusion was elimination of the lateral tissues responsible for elevation and closure of the neural folds. Analysis of particular components of the lateral tissues essential for convergence, by treating embryos (n = 75) with chemicals known to degrade tissue-tissue bonds or specific components of the perineural matrix, indicated that more than 75% of the embryos treated with EDTA, EDTA plus Ca2+, trypsin, collagenase, or hyaluronidase exhibited little or no effect on convergence, dorsomedial fusion, and concomitant occlusion.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003012 Microbial Collagenase A metalloproteinase which degrades helical regions of native collagen to small fragments. Preferred cleavage is -Gly in the sequence -Pro-Xaa-Gly-Pro-. Six forms (or 2 classes) have been isolated from Clostridium histolyticum that are immunologically cross-reactive but possess different sequences and different specificities. Other variants have been isolated from Bacillus cereus, Empedobacter collagenolyticum, Pseudomonas marinoglutinosa, and species of Vibrio and Streptomyces. EC 3.4.24.3. Clostridiopeptidase A,Clostridium histolyticum Collagenase,Collagenase, Microbial,Collagenase Clostridium histolyticum,Collagenase-Like Peptidase,Collalysine,Nucleolysin,Clostridium histolyticum, Collagenase,Collagenase Like Peptidase,Collagenase, Clostridium histolyticum,Peptidase, Collagenase-Like,histolyticum, Collagenase Clostridium
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D006821 Hyaluronoglucosaminidase An enzyme that catalyzes the random hydrolysis of 1,4-linkages between N-acetyl-beta-D-glucosamine and D-glucuronate residues in hyaluronate. (From Enzyme Nomenclature, 1992) There has been use as ANTINEOPLASTIC AGENTS to limit NEOPLASM METASTASIS. Hyaluronidase,Duran-Reynals Permeability Factor,GL Enzyme,Hyaglosidase,Hyaluronate Hydrolase,Wydase,Duran Reynals Permeability Factor,Factor, Duran-Reynals Permeability,Hydrolase, Hyaluronate,Permeability Factor, Duran-Reynals
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

M E Desmond, and M C Field
August 1998, Developmental dynamics : an official publication of the American Association of Anatomists,
M E Desmond, and M C Field
January 1972, Nature: New biology,
M E Desmond, and M C Field
September 1991, Development (Cambridge, England),
M E Desmond, and M C Field
February 2001, The Anatomical record,
M E Desmond, and M C Field
September 1974, Brain research,
M E Desmond, and M C Field
January 1977, Acta anatomica,
M E Desmond, and M C Field
May 1985, The Journal of comparative neurology,
M E Desmond, and M C Field
May 1975, Developmental biology,
M E Desmond, and M C Field
January 1986, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
M E Desmond, and M C Field
January 1975, Brain research,
Copied contents to your clipboard!