The Ca(2+)-transport ATPases from the plasma membrane. 1992

F Wuytack, and L Raeymaekers
Laboratorium voor Fysiologie, K. U. Leuven, Belgium.

The initial studies on the plasma membrane (PM) Ca(2+)-transport ATPases were made in the erythrocyte, a structure that can not be taken as representing a typical eukaryotic cell. In other cell types however, the study of the PM Ca(2+)-transport ATPase is complicated by the simultaneous expression of related Ca(2+)-pumps in intracellular stores. Whereas there are as yet no known specific inhibitors for the PM Ca(2+)-transport ATPase, a number of selective inhibitors for the endo(sarco)plasmic reticulum Ca2+ pumps have been described: thapsigargin, cyclopiazonic acid and 2,5-di-(tert-butyl)-1,4-benzohydroquinone. With the recent introduction of the molecular biological approach, it became quickly obvious that a family of at least 5 different PM Ca(2+)-transport ATPase genes govern the tissue-dependent expression of PM Ca2+ pumps. Moreover alternative splicing of the primary gene transcripts was found to further enhance the number of pump variants. The PM Ca(2+)-transport ATPase are subject to modulatory control by calmodulin, by acidic phospholipids, and by the known families of protein kinases. Each of the ensuing effects are mutually related and interdependent. The wide variety PM Ca2+ pump isoforms and their regulation by such an intricate modulatory network allows the distinct tissues to adapt most adequately to the prevailing tissue and stimulus specific requirements.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

F Wuytack, and L Raeymaekers
April 2015, Biochemical and biophysical research communications,
F Wuytack, and L Raeymaekers
December 2014, Journal of bioenergetics and biomembranes,
F Wuytack, and L Raeymaekers
January 2001, Transplantation proceedings,
F Wuytack, and L Raeymaekers
July 2010, World journal of biological chemistry,
F Wuytack, and L Raeymaekers
December 2003, Journal of plant research,
F Wuytack, and L Raeymaekers
March 2014, Plants (Basel, Switzerland),
Copied contents to your clipboard!