Immunohistochemical localization of receptors for vasoactive intestinal peptide and substance P in human trachea. 1992

A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
Institute for Anatomy and Cell Biology I, University of Heidelberg, Germany.

Tissue sections of human cervical trachea were processed for immunohistochemical demonstration of receptors for substance P [using an anti-SP anti-idiotypic antiserum directed toward the ligand binding site of the receptor (Couraud J-Y, Escher ED, Regoli D, Imhof V, Rossignol B, Pradelles P. Anti-substance P anti-idiotypic antibodies: Characterization and biological activities. J Biol Chem 1985;260:9461-9; Couraud J-Y, Maillet S, Grassi J, Frobert Y, Pradelles P. Characterization and properties of anti-substance P antiidiotypic antibodies. Methods Enzymol 1989; 178:275-300)] and vasoactive intestinal peptide (VIP; utilizing a monoclonal antibody toward VIP receptors of an adenocarcinoma cell line (Pichon J, Hirn M, Muller J-M, Mangeat P, Marvaldi J. Anticell surface monoclonal antibodies which antagonize the action of VIP in a human adenocarcinoma cell line (HT29). EMBO J 1983;2:1017-22)], respectively. Mucus cells of the submucosal glands (identified by periodic acid Schiff staining) and neuroendocrine cells of the respiratory epithelium (identified by immunoreactivity to protein gene product 9.5) displayed intense VIP receptor-immunoreactivity. Other tissue components known to respond to exogenously administered VIP, e.g., trachealis muscle, lacked VIP receptor-immunoreactivity, indicating that the monoclonal antibody did not label all receptor subtypes. In accordance with the known pharmacological actions of substance P upon the airways, the anti-substance P receptor antibody labeled the trachealis muscle, submucosal glands, and respiratory epithelium, predominantly at the luminal aspect. Since substance P as well as the structurally related tachykinin, neurokinin A, competed with the anti-receptor antibody in binding to the tissue section, it is likely that both NK-1 and NK-2 receptor subtypes were labeled. The present histochemical approach to localize peptide receptors in the trachea allowed precise analysis of distribution unreached by previous studies using autoradiography. Together with pharmacological data, these morphological findings contribute to the understanding of the sequences of events evoked by the neuropeptides, substance P and VIP, in the human trachea.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011964 Receptors, Gastrointestinal Hormone Cell surface proteins that bind gastrointestinal hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Most gastrointestinal hormones also act as neurotransmitters so these receptors are also present in the central and peripheral nervous systems. Gastrointestinal Hormone Receptors,Intestinal Hormone Receptors,Receptors, Gastrointestinal Peptides,Gastrointestinal Hormone Receptor,Intestinal Hormone Receptor,Receptors, Gastrointestinal Hormones,Receptors, Intestinal Hormone,Gastrointestinal Hormones Receptors,Gastrointestinal Peptides Receptors,Hormone Receptor, Gastrointestinal,Hormone Receptor, Intestinal,Hormone Receptors, Gastrointestinal,Hormone Receptors, Intestinal,Hormones Receptors, Gastrointestinal,Peptides Receptors, Gastrointestinal,Receptor, Gastrointestinal Hormone,Receptor, Intestinal Hormone
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D014132 Trachea The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi. Tracheas
D017981 Receptors, Neurotransmitter Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses. Neurohumor Receptors,Neuromediator Receptors,Neuromodulator Receptors,Neuroregulator Receptors,Receptors, Neurohumor,Receptors, Synaptic,Synaptic Receptor,Synaptic Receptors,Neuromediator Receptor,Neuromodulator Receptor,Neuroregulator Receptor,Neurotransmitter Receptor,Receptors, Neuromediators,Receptors, Neuromodulators,Receptors, Neuroregulators,Receptors, Neurotransmitters,Neuromediators Receptors,Neuromodulators Receptors,Neuroregulators Receptors,Neurotransmitter Receptors,Neurotransmitters Receptors,Receptor, Neuromediator,Receptor, Neuromodulator,Receptor, Neuroregulator,Receptor, Neurotransmitter,Receptor, Synaptic,Receptors, Neuromediator,Receptors, Neuromodulator,Receptors, Neuroregulator
D018005 Receptors, Vasoactive Intestinal Peptide Cell surface proteins that bind VASOACTIVE INTESTINAL PEPTIDE and PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE with high affinity and trigger intracellular changes which influence the behavior of cells. Receptors, VIP,VIP Receptors,Vasoactive Intestinal Peptide Receptors,VIP Receptor,Vasoactive Intestinal Peptide Receptor,Receptor, VIP

Related Publications

A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
November 1987, Biochemical and biophysical research communications,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
July 1998, Blood,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
January 1988, Neuroscience,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
January 2009, Hepato-gastroenterology,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
November 2010, Peptides,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
October 1986, Annals of neurology,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
January 2005, American journal of surgery,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
July 1989, Digestive diseases and sciences,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
September 1988, Ceskoslovenska gynekologie,
A Fischer, and W Kummer, and J Y Couraud, and D Adler, and D Branscheid, and C Heym
January 1990, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!