Sodium butyrate inhibits myogenesis by interfering with the transcriptional activation function of MyoD and myogenin. 1992

L A Johnston, and S J Tapscott, and H Eisen
Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Sodium butyrate reversibly inhibits muscle differentiation and blocks the expression of many muscle-specific genes in both proliferating myoblasts and differentiated myotubes. We investigated the role of the basic helix-loop-helix (bHLH) myogenic determinator proteins MyoD and myogenin in this inhibition. Our data suggest that both MyoD and myogenin are not able to function as transcriptional activators in the presence of butyrate, although both apparently retain the ability to bind DNA. Transcription of MyoD itself is extinguished in butyrate-treated myoblasts and myotubes, an effect that may be due to the inability of MyoD to autoactivate its own transcription. We present evidence that the HLH region of MyoD is essential for butyrate inhibition of MyoD. In contrast to MyoD and myogenin, butyrate does not inhibit the ubiquitous basic HLH protein E2-5 from functioning as a transcriptional activator.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

L A Johnston, and S J Tapscott, and H Eisen
December 1997, European journal of cell biology,
L A Johnston, and S J Tapscott, and H Eisen
January 2005, Seminars in cell & developmental biology,
L A Johnston, and S J Tapscott, and H Eisen
October 2008, The Journal of biological chemistry,
L A Johnston, and S J Tapscott, and H Eisen
June 1991, The New biologist,
L A Johnston, and S J Tapscott, and H Eisen
February 1989, Cell,
L A Johnston, and S J Tapscott, and H Eisen
October 2000, The Journal of biological chemistry,
L A Johnston, and S J Tapscott, and H Eisen
September 1996, Molecular and cellular biology,
Copied contents to your clipboard!