IgE receptor-mediated arachidonic acid release by rat basophilic leukemia (RBL-2H3) cells: possible role in activating degranulation. 1992

A M O'Rourke, and M F Mescher, and J R Apgar
Division of Membrane Biology, Medical Biology Institute, La Jolla, CA 92037.

Aggregation of the IgE receptor on rat basophilic leukemia (RBL-2H3) cells triggers increased hydrolysis of polyphosphoinositides (PI), secretion of arachidonic acid (AA) and its metabolites, and degranulation to release 5-hydroxytryptamine. Despite the documented involvement of second messengers produced by the PI pathway in RBL cell exocytosis, recent evidence has suggested that additional signalling events are also necessary. We have, therefore, examined PLA2 activation and AA metabolite production by these cells in response to Ag stimulation, and evaluated the potential role of these in activating degranulation. The time course and antigen dose dependence for release of AA and its metabolites were comparable to those for degranulation and production of inositol phosphates (InsPs) when examined in parallel. Stimulated fatty acid release was highly selective for AA (compared with oleic or linoleic acids) and appeared to result predominantly from PLA2 activation. AA released upon antigen stimulation is rapidly metabolized to produce prostaglandin and leukotrienes. These are not required for activating degranulation, since BW755c completely inhibited AA metabolite production without affecting AA release, degranulation or InsP production. In contrast, the PLA2 inhibitors quinacrine and quercetin inhibited both AA release and degranulation in parallel, without significantly affecting levels of InsP production, and this inhibition could be partially reversed by exogenous addition of AA and lysophospholipid. These results demonstrate that activation of IgE-receptor mediated exocytosis of RBL cells does not require AA metabolites, and strongly suggest that PLA2 activation and release of AA and lysophospholipid may be involved in triggering this response.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D011794 Quercetin A flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. 3,3',4',5,7-Pentahydroxyflavone,Dikvertin
D011796 Quinacrine An acridine derivative formerly widely used as an antimalarial but superseded by chloroquine in recent years. It has also been used as an anthelmintic and in the treatment of giardiasis and malignant effusions. It is used in cell biological experiments as an inhibitor of phospholipase A2. Mepacrine,Acrichine,Atabrine,Atebrin,Quinacrine Dihydrochloride,Quinacrine Dihydrochloride, Dihydrate,Quinacrine Dihyrochloride, (R)-Isomer,Quinacrine Dihyrochloride, (S)-Isomer,Quinacrine Dimesylate,Quinacrine Hydrochloride,Quinacrine Monoacetate,Quinacrine Monohydrochloride,Quinacrine Monomesylate,Quinacrine, (+-)-Isomer,Quinacrine, (R)-Isomer,Quinacrine, (S)-Isomer,Dihydrochloride, Quinacrine,Dimesylate, Quinacrine,Hydrochloride, Quinacrine,Monoacetate, Quinacrine,Monohydrochloride, Quinacrine,Monomesylate, Quinacrine
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

A M O'Rourke, and M F Mescher, and J R Apgar
January 2010, Microbiology and immunology,
A M O'Rourke, and M F Mescher, and J R Apgar
March 2004, Journal of pharmacological sciences,
A M O'Rourke, and M F Mescher, and J R Apgar
July 2006, Journal of immunology (Baltimore, Md. : 1950),
A M O'Rourke, and M F Mescher, and J R Apgar
November 2015, Toxicological sciences : an official journal of the Society of Toxicology,
A M O'Rourke, and M F Mescher, and J R Apgar
July 1987, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
A M O'Rourke, and M F Mescher, and J R Apgar
March 1993, Biochemical and biophysical research communications,
A M O'Rourke, and M F Mescher, and J R Apgar
August 2009, Bioorganic & medicinal chemistry,
A M O'Rourke, and M F Mescher, and J R Apgar
February 1998, Pulmonary pharmacology & therapeutics,
Copied contents to your clipboard!