Time-dependent utilization of platelet arachidonic acid by the neutrophil in formation of 5-lipoxygenase products in platelet-neutrophil co-incubations. 1992

C Antoine, and R C Murphy, and P M Henson, and J Maclouf
National Jewish Center for Immunology and Respiratory Medicine, Denver, CO.

The biosynthesis of leukotrienes is known to occur through a series of complex processes which, in part, can be influenced by cell-cell interactions. Several studies have suggested that arachidonic acid availability is a major limiting step for leukotriene biosynthesis and that its transfer between cells can represent a significant source of this precursor. Accordingly, effect of time and source of arachidonic acid on transcellular leukotriene synthesis was studied in mixed platelet/neutrophil populations challenged with the calcium ionophore A23187. A time-dependent contribution of platelet-derived as well as neutrophil-derived arachidonate was found in the selective formation of neutrophil 5-lipoxygenase metabolites. Utilization of platelet or neutrophil arachidonate was followed by incorporation of radiolabeled arachidonic acid into platelet or neutrophil phospholipids prior to stimulation. Specific activity of liberated arachidonic acid along with numerous 5-lipoxygenase products (including LTB4, 20-hydroxy-LTB4, 5-HETE and LTC4) was determined in order to follow mass and radiolabel. A large amount of platelet-derived arachidonic acid was released in the first 1.5 min, whereas 10 min platelet-derived arachidonate was much lower in amount but significantly higher in specific activity, suggesting different precursor pools. The platelet-derived arachidonate was heavily utilized by the neutrophils at the early time points for formation of 5-HETE and delta 6-trans-LTB4 isomers, but appeared to contribute only marginally to the constitutive metabolism of neutrophil arachidonate into LTB4. Results from these experiments suggest different pools of 5-lipoxygenase in the neutrophil and indicate a time and source dependent modulation of arachidonate metabolism in mixed cell interactions.

UI MeSH Term Description Entries
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D001094 Arachidonate 5-Lipoxygenase An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes. 5-Lipoxygenase,Arachidonic Acid 5-Lipoxygenase,LTA4 Synthase,Leukotriene A Synthase,Leukotriene A4 Synthase,Leukotriene A4 Synthetase,5 Lipoxygenase,5-Lipoxygenase, Arachidonate,5-Lipoxygenase, Arachidonic Acid,Arachidonate 5 Lipoxygenase,Arachidonic Acid 5 Lipoxygenase,Synthase, LTA4,Synthase, Leukotriene A,Synthase, Leukotriene A4,Synthetase, Leukotriene A4
D013189 SRS-A A group of LEUKOTRIENES; (LTC4; LTD4; and LTE4) that is the major mediator of BRONCHOCONSTRICTION; HYPERSENSITIVITY; and other allergic reactions. Earlier studies described a "slow-reacting substance of ANAPHYLAXIS" released from lung by cobra venom or after anaphylactic shock. The relationship between SRS-A leukotrienes was established by UV which showed the presence of the conjugated triene. (From Merck Index, 11th ed) Slow Reacting Substance of Anaphylaxis
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

C Antoine, and R C Murphy, and P M Henson, and J Maclouf
January 1984, Clinical physiology and biochemistry,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
July 1993, European journal of biochemistry,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
January 2003, Journal of leukocyte biology,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
January 1980, Advances in prostaglandin and thromboxane research,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
April 1986, Thrombosis research,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
January 1987, Advances in prostaglandin, thromboxane, and leukotriene research,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
September 1989, Neurosurgery,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
December 1982, Lipids,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
February 1981, Prostaglandins,
C Antoine, and R C Murphy, and P M Henson, and J Maclouf
January 1989, Advances in experimental medicine and biology,
Copied contents to your clipboard!