ATP-activated Ca(2+)-permeable channels in rat peritoneal macrophages. 1992

A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
Institute of Cytology of Russian Academy of Sciences, St. Petersburg.

The patch-clamp technique was used to study mechanisms of ATP-induced Ca2+ influx in rat peritoneal macrophages. The experiments on whole-cell and patch membranes have shown that extracellular ATP activates channels permeable to di- and monovalent inorganic cations. Ratios of unitary channel conductances in 105 mM Ca2+, Sr2+, Mn2+, Ba2+ and normal sodium solutions were 1.0, 0.95, 0.75, 0.55 and 0.85, respectively. The channels could open in the presence of non-hydrolyzable GTP analogues in artificial intracellular solution. The data are consistent with the hypothesis that a GTP-binding protein is involved in receptor-to-channel coupling.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
December 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
September 1998, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
January 2007, Handbook of experimental pharmacology,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
August 2000, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
November 1995, The American journal of physiology,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
December 1992, The American journal of physiology,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
November 1990, The American journal of physiology,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
January 1992, Pflugers Archiv : European journal of physiology,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
January 1993, Trends in cardiovascular medicine,
A P Naumov, and Y A Kuryshev, and E V Kaznacheyeva, and G N Mozhayeva
March 1996, The Journal of physiology,
Copied contents to your clipboard!