Purification and characterization of a mutant DnaB protein specifically defective in ATP hydrolysis. 1992

P Shrimankar, and L Stordal, and R Maurer
Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4960.

The dnaB gene of Escherichia coli encodes an essential DNA replication enzyme. Fueled by the energy derived from the hydrolysis of ATP to ADP+P(i), this enzyme unwinds double-stranded DNA in advance of the DNA polymerase. While doing so, it intermittently stimulates primase to synthesize an RNA primer for an Okazaki fragment. To better understand the structural basis of these and other aspects of DnaB function, we have initiated a study of mutant DnaB proteins. Here, we report the purification and characterization of a mutant DnaB protein (RC231) containing cysteine in place of arginine at residue 231. The mutant protein attains a stable, properly folded structure that allows association of six promoters to form a hexamer, as is also true for wild-type DnaB. Further, the mutant protein interacts with ATP, the nonhydrolyzable ATP analog adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), ADP, and poly(dT), and it stimulates primase action. It is, however, profoundly deficient in ATP hydrolysis, helicase activity, and replication activity at the chromosomal origin of replication. In addition, while general priming reactions with wild-type DnaB and ATP elicited the synthesis of short primers, reactions with DnaB and ATP gamma S or with RC231 and either ATP or ATP gamma S stimulated the synthesis of significantly longer primers. On the basis of these observations, we suggest that primase interacts directly with DnaB throughout primer synthesis during general priming, until dissociation of DnaB from DNA or ATP hydrolysis by DnaB disrupts the interaction and leads to primer termination.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

P Shrimankar, and L Stordal, and R Maurer
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
P Shrimankar, and L Stordal, and R Maurer
May 1981, The Journal of biological chemistry,
P Shrimankar, and L Stordal, and R Maurer
January 2019, Nature communications,
P Shrimankar, and L Stordal, and R Maurer
October 1994, The Journal of biological chemistry,
P Shrimankar, and L Stordal, and R Maurer
September 2021, Nature communications,
P Shrimankar, and L Stordal, and R Maurer
June 1977, Archives of biochemistry and biophysics,
P Shrimankar, and L Stordal, and R Maurer
June 2005, The Journal of biological chemistry,
P Shrimankar, and L Stordal, and R Maurer
April 2002, The Journal of biological chemistry,
Copied contents to your clipboard!