Purification and characterization of heparin lyases from Flavobacterium heparinum. 1992

D L Lohse, and R J Linhardt
Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City 52242.

Heparin lyase I has been purified from Flavobacterium heparinum and has been partially characterized (Yang, V. C., Linhardt, R. J., Berstein, H., Cooney, C. L., and Langer, R. (1985) J. Biol. Chem. 260, 1849-1857). There has been no report of the purification of the other polysaccharide lyases from this organism. Although all three of these heparin/heparan sulfate lyases are widely used, with the exception of heparin lyase I, there is no information on their purity or their physical and kinetic characteristics. The absence of pure heparin lyases and a lack of understanding of the optimal catalytic conditions and substrate specificity has stood in the way of the use of these enzymes as reagents for the specific depolymerization of heparin and heparan sulfate into oligosaccharides for structure and activity studies. This paper describes a single, reproducible scheme to simultaneously purify all three of the heparin lyases from F. heparinum to apparent homogeneity. Heparin lyase I (heparinase, EC 4.2.2.7), heparin lyase II (no EC number), and heparin lyase III (heparitinase, EC 4.2.2.8) have molecular weights (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and isoelectric points (by isoelectric focusing) of M(r) 42,800, pI 9.1-9.2, M(r) 84,100, pI 8.9-9.1, M(r) 70,800, pI 9.9-10.1, respectively. Their amino acid analyses and peptide maps demonstrate that while these proteins are different gene products they are closely related. The kinetic properties of the heparin lyases have been determined as well as the conditions to optimize their activity and stability. These data should improve the application of these important enzymes in the study of heparin and heparan sulfate.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011133 Polysaccharide-Lyases A group of carbon-oxygen lyases. These enzymes catalyze the breakage of a carbon-oxygen bond in polysaccharides leading to an unsaturated product and the elimination of an alcohol. EC 4.2.2. Polysaccharide Lyase,Polysaccharide-Lyase,Lyase, Polysaccharide,Polysaccharide Lyases
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

D L Lohse, and R J Linhardt
November 1993, Archives of biochemistry and biophysics,
D L Lohse, and R J Linhardt
August 1993, Biochemistry,
D L Lohse, and R J Linhardt
February 1985, The Journal of biological chemistry,
D L Lohse, and R J Linhardt
February 1996, The Journal of biological chemistry,
D L Lohse, and R J Linhardt
August 2001, Biochemical and biophysical research communications,
D L Lohse, and R J Linhardt
January 1969, The Biochemical journal,
Copied contents to your clipboard!