Molecular extinction coefficients of lead sulfide and polymerized diaminobenzidine as final reaction products of histochemical phosphatase reactions. 1992

C J van Noorden, and G N Jonges
Laboratory of Cell Biology and Histology, University of Amsterdam, The Netherlands.

Molar extinction coefficients of precipitated lead sulfide (PbS) and polymerized diaminobenzidine (polyDAB) have been determined at wavelengths of 450 nm and 480 nm, respectively, for quantitative histochemical analysis of phosphatase reactions. These values are essential for the conversion of cytophotometric (mean integrated) absorbance values to absolute units of substrate converted per unit time and volume of tissue. This conversion allows direct comparison of histochemical and biochemical data. The molar extinction coefficient of PbS at 450 nm was found to be 3,800 and therefore, per mole phosphate liberated, the molar extinction coefficient is 5,700 because 3 moles phosphate are captured by 2 moles lead at neutral or alkaline pH. Parallel experiments with the cerium-DAB method revealed that the molar extinction coefficient of polyDAB at 480 nm is 5,500 with respect to liberated phosphate. The molar extinction coefficients were applied for comparison of data from biochemical and histochemical assays of glucose-6-phosphatase activity in rat livers. A significant correlation was found between both sets of data. The values were in the same order of magnitude with histochemical values approximately 1.4 times higher than biochemical values.

UI MeSH Term Description Entries
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D002563 Cerium An element of the rare earth family of metals. It has the atomic symbol Ce, atomic number 58, and atomic weight 140.12. Cerium is a malleable metal used in industrial applications.
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D005260 Female Females
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry

Related Publications

C J van Noorden, and G N Jonges
March 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C J van Noorden, and G N Jonges
July 2005, The Journal of chemical physics,
C J van Noorden, and G N Jonges
October 2010, Environmental science & technology,
C J van Noorden, and G N Jonges
January 1952, Acta anatomica,
C J van Noorden, and G N Jonges
December 2018, Water science and technology : a journal of the International Association on Water Pollution Research,
Copied contents to your clipboard!