Angiotensin and angiotensin converting enzyme tissue levels in two-kidney, one clip hypertensive rats. 1992

S Guan, and J Fox, and K D Mitchell, and L G Navar
Department of Physiology, Tulane University School of Medicine, New Orleans, La 70112.

Renal tissue angiotensin I (Ang I) and II (Ang II) content and angiotensin converting enzyme activity were assessed in both kidneys during initial (7 days) and maintenance (25 days) phases of two-kidney, one clip hypertension in rats. At 7 and 25 days, systolic arterial pressure was 146 +/- 2 and 170 +/- 7 mm Hg, respectively. After 7 days, Ang I content of clipped kidneys was 64% and 70% higher (p < 0.001) than in nonclipped and sham-operated kidneys, respectively, when compared with levels in kidneys from sham-operated rats. In kidneys harvested 25 days after clipping one renal artery, Ang I and Ang II contents in clipped kidneys were increased 102% and 24% (p < 0.01), respectively. Ang II content was also 32% higher in nonclipped kidneys. Angiotensin converting enzyme activity in nonclipped kidneys was greater (p < 0.05) than that in either clipped (46% higher) or sham-operated kidneys (57% higher). Plasma Ang I and Ang II levels were elevated at 7 days but were not different at 25 days in clipped rats. These results demonstrate a dissociation between intrarenal and circulating levels of Ang I and Ang II and suggest that qualitatively different mechanisms may be responsible for the elevated intrarenal Ang II levels during the initial and maintenance phases of renal hypertension.

UI MeSH Term Description Entries
D006978 Hypertension, Renovascular Hypertension due to RENAL ARTERY OBSTRUCTION or compression. Hypertension, Goldblatt,Goldblatt Syndrome,Goldblatt Hypertension,Renovascular Hypertension,Syndrome, Goldblatt
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008297 Male Males
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D000803 Angiotensin I A decapeptide that is cleaved from precursor angiotensinogen by RENIN. Angiotensin I has limited biological activity. It is converted to angiotensin II, a potent vasoconstrictor, after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME.
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

S Guan, and J Fox, and K D Mitchell, and L G Navar
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
S Guan, and J Fox, and K D Mitchell, and L G Navar
May 1998, Journal of hypertension,
S Guan, and J Fox, and K D Mitchell, and L G Navar
November 2021, Saudi journal of biological sciences,
S Guan, and J Fox, and K D Mitchell, and L G Navar
March 1993, The American journal of physiology,
S Guan, and J Fox, and K D Mitchell, and L G Navar
July 1986, Hypertension (Dallas, Tex. : 1979),
S Guan, and J Fox, and K D Mitchell, and L G Navar
September 1982, Clinical science (London, England : 1979),
S Guan, and J Fox, and K D Mitchell, and L G Navar
June 1987, Clinical science (London, England : 1979),
S Guan, and J Fox, and K D Mitchell, and L G Navar
January 1981, Hypertension (Dallas, Tex. : 1979),
S Guan, and J Fox, and K D Mitchell, and L G Navar
April 1987, Journal of hypertension,
Copied contents to your clipboard!