Rickettsia rickettsii induces superoxide radical and superoxide dismutase in human endothelial cells. 1992

L A Santucci, and P L Gutierrez, and D J Silverman
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore.

Human endothelial cells infected with Rickettsia rickettsii, the etiological agent of Rocky Mountain spotted fever, undergo striking morphological changes to the endoplasmic reticulum-outer nuclear envelope complex. These changes are accompanied by concurrent accumulation of intracellular peroxides. Both of these findings are consistent with the notion that cells undergo some form of oxidative stress. Since oxidant injury is often initiated or mediated through oxygen radicals, we examined superoxide radical generation when endothelial cells were exposed to R. rickettsii. We also examined the levels of superoxide dismutase, an enzyme induced in response to increased superoxide formation. The levels of both superoxide and superoxide dismutase increased when endothelial cells were exposed to R. rickettsii. These results, together with our previous findings, support our hypothesis that cells infected by this intracellular bacterium experience oxidant-mediated injury that may eventually contribute to cell death.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012284 Rickettsia rickettsii A species of gram-negative, aerobic bacteria that is the etiologic agent of ROCKY MOUNTAIN SPOTTED FEVER. Its cells are slightly smaller and more uniform in size than those of RICKETTSIA PROWAZEKII.
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese

Related Publications

L A Santucci, and P L Gutierrez, and D J Silverman
April 1998, Infection and immunity,
L A Santucci, and P L Gutierrez, and D J Silverman
March 1994, Blood,
L A Santucci, and P L Gutierrez, and D J Silverman
July 1997, Infection and immunity,
L A Santucci, and P L Gutierrez, and D J Silverman
August 2002, Infection and immunity,
L A Santucci, and P L Gutierrez, and D J Silverman
February 1984, The Journal of infectious diseases,
L A Santucci, and P L Gutierrez, and D J Silverman
December 1991, Infection and immunity,
L A Santucci, and P L Gutierrez, and D J Silverman
January 1986, Annales de l'Institut Pasteur. Microbiologie,
L A Santucci, and P L Gutierrez, and D J Silverman
April 1986, The Journal of infectious diseases,
L A Santucci, and P L Gutierrez, and D J Silverman
July 1982, Infection and immunity,
L A Santucci, and P L Gutierrez, and D J Silverman
November 2016, Journal of clinical biochemistry and nutrition,
Copied contents to your clipboard!