Chemical modification of Torpedo acetylcholinesterase by disulfides: appearance of a "molten globule" state. 1992

E A Dolginova, and E Roth, and I Silman, and L M Weiner
Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.

Modification of Torpedo californica acetylcholinesterase (AChE) both by bis(1-oxy-2,2,5,5-tetramethyl-3-imidazolin-4-yl)disulfide (biradical) and by 4,4'-dithiopyridine, via a thiol-disulfide exchange reaction, was monitored by EPR and optical spectroscopy, respectively. Incubation with these reagents caused complete loss of enzymic activity. Treatment with glutathione of AChE modified by either of the two disulfides led to rapid release of the bound reagent with simultaneous regeneration of the single free thiol group of the enzyme. However, no concomitant recovery of catalytic activity was observed. SDS-PAGE showed that both the modified and demodified enzymes retained their structure as a disulfide-linked dimer. Circular dichroism revealed that modification of AChE by the disulfide agents with or without demodification by glutathione led to a complete disappearance of the ellipticity in the near-UV and to a much smaller decrease in ellipticity in the far-UV. The CD spectra observed are typical of the "molten globule" state of proteins. 1-Anilino-8-naphthalenesulfonate binding measurements and an enhanced susceptibility to trypsinolysis supported the supposition that chemical modification had transformed native AChE to a "molten globule".

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014101 Torpedo A genus of the Torpedinidae family consisting of several species. Members of this family have powerful electric organs and are commonly called electric rays. Electric Rays,Torpedinidae,Rays, Electric

Related Publications

E A Dolginova, and E Roth, and I Silman, and L M Weiner
December 1994, The Journal of biological chemistry,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
February 1994, Biochemical and biophysical research communications,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
December 1994, Biochemistry,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
October 2003, Protein science : a publication of the Protein Society,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
February 2015, Physical chemistry chemical physics : PCCP,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
February 2002, Biochemical and biophysical research communications,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
March 2004, FEBS letters,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
April 1997, Proteins,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
June 1993, Proteins,
E A Dolginova, and E Roth, and I Silman, and L M Weiner
August 1995, FEBS letters,
Copied contents to your clipboard!