The effects of TGF-alpha and 17 beta-estradiol on polyphosphoinositide metabolism in MCF-7 breast cancer cells. 1992

R N Etindi, and A Manni, and J Martel
Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033.

The mechanism by which transforming growth factor-alpha (TGF-alpha) stimulates breast cancer cell proliferation is largely unknown. Furthermore, its potential role as an autocrine effector of estradiol-17 beta (E2)-stimulated growth of hormone-dependent mammary tumors remains controversial. Transient changes in phosphatidylinositol (PI) turnover have been demonstrated in several tissues in response to growth factors. In these experiments, we tested the effects of TGF-alpha and E2 on PI metabolism in three MCF-7 breast cancer cell sublines (MCF-7B, MCF-7I, and MCF-7J). Although TGF-alpha was mitogenic in MCF-7I and MCF-7J cells, PI hydrolysis was stimulated by the growth factor only in the MCF-7I cells. In addition, the TGF-alpha effect was relatively modest, ranging from 23% to 42%. E2 effects on PI turnover were tested in the MCF-7B cells, which were the most sensitive to the proliferative effect of the hormone. E2 did not stimulate PI hydrolysis, whether or not the cells were labelled in the presence of the hormone. On the other hand, E2 did seem to stimulate de novo synthesis of phosphatidylinositol and induce activation of PI kinases. These results demonstrate that TGF-alpha-stimulated PI hydrolysis is modest and cell type dependent. At least under certain conditions, PI metabolism is not involved in the proliferative effects of TGF-alpha (MCF-7J) or E2 (MCF-7B). The role of increased PI synthesis in E2-stimulated MCF-7 cell growth remains to be established.

UI MeSH Term Description Entries
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016211 Transforming Growth Factor alpha An EPIDERMAL GROWTH FACTOR related protein that is found in a variety of tissues including EPITHELIUM, and maternal DECIDUA. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form which binds to the EGF RECEPTOR. Epidermal Growth Factor-Related Transforming Growth Factor,TGF-alpha,TGFalpha,Epidermal Growth Factor Related Transforming Growth Factor

Related Publications

R N Etindi, and A Manni, and J Martel
February 1988, Molecular endocrinology (Baltimore, Md.),
R N Etindi, and A Manni, and J Martel
November 1992, Cancer research,
R N Etindi, and A Manni, and J Martel
January 1992, International journal of cancer,
R N Etindi, and A Manni, and J Martel
January 1984, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
R N Etindi, and A Manni, and J Martel
May 1988, Breast cancer research and treatment,
R N Etindi, and A Manni, and J Martel
June 1989, Journal of steroid biochemistry,
R N Etindi, and A Manni, and J Martel
September 1990, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!