Organic cation transport by rat hepatocyte basolateral membrane vesicles. 1992

T D McKinney, and M A Hosford
Department of Medicine, Indiana University School of Medicine, Indianapolis.

Hepatocyte basolateral membrane possesses transport systems for mediated uptake of organic cations, the first step in the subsequent biliary excretion and/or metabolism of these compounds. The purpose of these studies was to evaluate potential mechanisms for transport of this class of solutes across this membrane by measuring 3H-labeled tetraethylammonium ([3H]TEA) transport into rat hepatocyte basolateral membrane vesicles. [3H]TEA uptake was stimulated by an outwardly directed proton gradient consistent with TEA-proton exchange. Proton gradient-stimulated [3H]TEA uptake was inhibited by quinidine and by the combination of valinomycin and carbonyl cyanide m-chlorophenylhydrazone (CCCP) but not by CCCP alone or by N1-methylnicotinamide (NMN). An outwardly directed TEA gradient also stimulated uptake of [3H]TEA with values at early time points exceeding those at equilibrium. This trans-stimulation or countertransport was saturable with an apparent Michaelis constant of 106 microM and maximal velocity of 434 pmol.mg-1.15 s-1. TEA countertransport was cis-inhibited by quinidine, cimetidine, and thiamine and by low temperature, but not by NMN. Thiamine was also capable of trans-stimulating [3H]TEA uptake. An outwardly directed potassium gradient enhanced and an inwardly directed potassium gradient reduced TEA countertransport but had no effect on [3H]TEA uptake occurring in the absence of other electrochemical driving forces. These studies indicate that there are at least two potential mechanisms in the hepatocyte basolateral membrane for transport of organic cations; organic cation-organic cation exchange (countertransport) and organic cation-proton exchange. Furthermore, the results are consistent with the existence of more than one transporter with different substrate affinities in each of these categories.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007474 Ion Exchange Reversible chemical reaction between a solid, often one of the ION EXCHANGE RESINS, and a fluid whereby ions may be exchanged from one substance to another. This technique is used in water purification, in research, and in industry. Exchange, Ion
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019789 Tetraethylammonium A potassium-selective ion channel blocker. (From J Gen Phys 1994;104(1):173-90) Tetraethylammonium Chloride,Tetraethylammonium Ion,Tetraethylammonium Bromide,Tetraethylammonium Hydroxide,Tetraethylammonium Iodide,Bromide, Tetraethylammonium,Chloride, Tetraethylammonium,Hydroxide, Tetraethylammonium,Iodide, Tetraethylammonium,Ion, Tetraethylammonium

Related Publications

T D McKinney, and M A Hosford
June 1990, The American journal of physiology,
T D McKinney, and M A Hosford
February 1989, Biochimica et biophysica acta,
T D McKinney, and M A Hosford
May 1987, The Biochemical journal,
T D McKinney, and M A Hosford
November 1992, The American journal of physiology,
T D McKinney, and M A Hosford
September 1992, Gastroenterology,
T D McKinney, and M A Hosford
April 1995, The Journal of pharmacology and experimental therapeutics,
T D McKinney, and M A Hosford
December 1992, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T D McKinney, and M A Hosford
December 1990, The American journal of physiology,
T D McKinney, and M A Hosford
July 1990, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!