Differential effects of saturated fatty acids on low density lipoprotein metabolism in the guinea pig. 1992

M L Fernandez, and E C Lin, and D J McNamara
Department of Nutrition, University of Arizona, Tucson 85721.

Studies have shown that dietary fat saturation affects guinea pig plasma low density lipoprotein (LDL) levels by altering both LDL receptor-mediated catabolism and flux rates of LDL (Fernandez et al. 1992. J. Lipid Res. 33: 97-109). The present studies investigated whether saturated fatty acids of varying chain lengths have differential effects on LDL metabolism. Guinea pigs were fed 15% (w/w, 35% calories) fat diets containing either palm kernel oil (PK), 52% lauric acid/18% myristic acid; palm oil (PO), 43% palmitic acid/4% stearic acid; or beef tallow (BT), 23% palmitic acid/14% stearic acid. Plasma LDL cholesterol levels were significantly higher for animals fed the PK diet (P < 0.001) with values of 83 +/- 19 (n = 12), 53 +/- 8 (n = 12) and 44 +/- 16 (n = 10) mg/dl for PK, PO, and BT diets, respectively. The relative percentage composition of LDL was modified by fat type; however, LDL diameters and peak densities were not different between diets, indicating no effect of saturated fatty acid composition on LDL size. ApoB/E receptor-mediated LDL fractional catabolic rates (FCR) were significantly lower in animals fed the PK diet (P < 0.01) and LDL apoB flux rates were reduced (P < 0.01) in animals fed the BT diet. A correlation was found between plasma LDL levels and receptor-mediated LDL catabolism (r = -0.66, P < 0.01). A higher apoB/E receptor number (Bmax), determined by in vitro LDL binding to guinea pig hepatic membranes, was observed for animals fed BT versus PK or PO diets and Bmax values were significantly correlated with plasma LDL levels (r = -0.776, P < 0.001). These results indicate that saturated fatty acids of varying chain length have differential effects on hepatic apoB/E receptor expression and on LDL apoB flux rates which in part account for differences in plasma LDL cholesterol levels of guinea pigs fed these saturated fats.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006937 Hypercholesterolemia A condition with abnormally high levels of CHOLESTEROL in the blood. It is defined as a cholesterol value exceeding the 95th percentile for the population. Hypercholesteremia,Elevated Cholesterol,High Cholesterol Levels,Cholesterol Level, High,Cholesterol Levels, High,Cholesterol, Elevated,Cholesterols, Elevated,Elevated Cholesterols,High Cholesterol Level,Hypercholesteremias,Hypercholesterolemias,Level, High Cholesterol,Levels, High Cholesterol

Related Publications

M L Fernandez, and E C Lin, and D J McNamara
October 1989, Journal of lipid research,
M L Fernandez, and E C Lin, and D J McNamara
February 1990, The New England journal of medicine,
M L Fernandez, and E C Lin, and D J McNamara
February 1954, The Australian journal of experimental biology and medical science,
M L Fernandez, and E C Lin, and D J McNamara
January 1994, World review of nutrition and dietetics,
M L Fernandez, and E C Lin, and D J McNamara
January 1994, World review of nutrition and dietetics,
M L Fernandez, and E C Lin, and D J McNamara
December 1994, The American journal of clinical nutrition,
M L Fernandez, and E C Lin, and D J McNamara
December 1994, The American journal of clinical nutrition,
M L Fernandez, and E C Lin, and D J McNamara
December 1994, Annals of medicine,
M L Fernandez, and E C Lin, and D J McNamara
October 2000, The British journal of nutrition,
M L Fernandez, and E C Lin, and D J McNamara
May 1981, Steroids,
Copied contents to your clipboard!