Acrosome reaction changes the pattern of cyclic nucleotide phosphodiesterases in human sperm. 1992

H J Glander, and D Dettmer
Department of Dermatology/Andrology, University of Leipzig, Germany.

Three categories of cyclic nucleotide phosphodiesterases (cNPDE) are distinguished at present: type 1 with high affinity to cyclic GMP; type 2 with low affinity to cyclic AMP and to cyclic GMP; and type 3 with high affinity to cyclic AMP. For the evaluation of normal values in human spermatozoa 50 semen samples with normal classical semen parameters were investigated. The activities (means +/- SD) of the cNPDE types (10(-11) mol/10 min x 10(8) spermatozoa) of washed human spermatozoa amounted to 47 +/- 22 (type 1), 3350 +/- 1537 (type 2), and 70 +/- 38 (type 3). A significant inhibition of type 3 by cyclic GMP could not be detected. One milligram protein of the spermatozoa hydrolyzed about 20-fold the amount of cyclic nucleotides compared with 1 mg protein of the seminal plasma. Furthermore, the cNPDE of the spermatozoa and of the seminal plasma differed in the influence of type 3 by cyclic GMP and in the pattern of activities. The acrosome reaction (AR) induced by the cold shock method led to an activation of type 2 and 3 unlike the initiation of the AR by the digitonin method. The latter did not cause significant differences of the cNPDE activities before and after the AR.

UI MeSH Term Description Entries
D007248 Infertility, Male The inability of the male to effect FERTILIZATION of an OVUM after a specified period of unprotected intercourse. Male sterility is permanent infertility. Sterility, Male,Sub-Fertility, Male,Subfertility, Male,Male Infertility,Male Sterility,Male Sub-Fertility,Male Subfertility,Sub Fertility, Male
D008297 Male Males
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000177 Acrosome The cap-like structure covering the anterior portion of SPERM HEAD. Acrosome, derived from LYSOSOMES, is a membrane-bound organelle that contains the required hydrolytic and proteolytic enzymes necessary for sperm penetration of the egg in FERTILIZATION. Acrosomes
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D015105 3',5'-Cyclic-AMP Phosphodiesterases Enzymes that catalyze the hydrolysis of CYCLIC AMP to form adenosine 5'-phosphate. The enzymes are widely distributed in animal tissue and control the level of intracellular cyclic AMP. Many specific enzymes classified under this heading demonstrate additional spcificity for 3',5'-cyclic IMP and CYCLIC GMP. 3',5'-Cyclic AMP 5'-Nucleotidohydrolase,3',5'-Cyclic-Nucleotide Phosphodiesterase,CAMP Phosphodiesterase,3',5' Cyclic AMP Phosphodiesterase,3',5'-Cyclic AMP Phosphodiesterase,3',5'-Cyclic Nucleotide Phosphodiesterase,3',5'-Cyclic-AMP Phosphodiesterase,3',5'-Nucleotide Phosphodiesterase,3,5-Cyclic AMP 5-Nucleotidohydrolase,3,5-Cyclic AMP Phosphodiesterase,3',5' Cyclic AMP 5' Nucleotidohydrolase,3',5' Cyclic AMP Phosphodiesterases,3',5' Cyclic Nucleotide Phosphodiesterase,3',5' Nucleotide Phosphodiesterase,3,5 Cyclic AMP 5 Nucleotidohydrolase,3,5 Cyclic AMP Phosphodiesterase,5'-Nucleotidohydrolase, 3',5'-Cyclic AMP,5-Nucleotidohydrolase, 3,5-Cyclic AMP,AMP 5'-Nucleotidohydrolase, 3',5'-Cyclic,AMP 5-Nucleotidohydrolase, 3,5-Cyclic,AMP Phosphodiesterase, 3',5'-Cyclic,AMP Phosphodiesterase, 3,5-Cyclic,Nucleotide Phosphodiesterase, 3',5'-Cyclic,Phosphodiesterase, 3',5'-Cyclic AMP,Phosphodiesterase, 3',5'-Cyclic Nucleotide,Phosphodiesterase, 3',5'-Cyclic-AMP,Phosphodiesterase, 3',5'-Cyclic-Nucleotide,Phosphodiesterase, 3',5'-Nucleotide,Phosphodiesterase, 3,5-Cyclic AMP,Phosphodiesterase, CAMP,Phosphodiesterases, 3',5'-Cyclic-AMP
D015106 3',5'-Cyclic-GMP Phosphodiesterases Enzymes that catalyze the hydrolysis of cyclic GMP to yield guanosine-5'-phosphate. 3',5'-Cyclic GMP 5'-Nucleotidohydrolase,3',5'-Cyclic GMP Phosphodiesterase,3',5'-Cyclic-GMP Phosphodiesterase,3,5-Cyclic GMP 5-Nucleotidohydrolase,3,5-Cyclic GMP Phosphodiesterase,3',5' Cyclic GMP 5' Nucleotidohydrolase,3',5' Cyclic GMP Phosphodiesterase,3',5' Cyclic GMP Phosphodiesterases,3,5 Cyclic GMP 5 Nucleotidohydrolase,3,5 Cyclic GMP Phosphodiesterase,5'-Nucleotidohydrolase, 3',5'-Cyclic GMP,5-Nucleotidohydrolase, 3,5-Cyclic GMP,GMP 5'-Nucleotidohydrolase, 3',5'-Cyclic,GMP 5-Nucleotidohydrolase, 3,5-Cyclic,GMP Phosphodiesterase, 3',5'-Cyclic,GMP Phosphodiesterase, 3,5-Cyclic,Phosphodiesterase, 3',5'-Cyclic GMP,Phosphodiesterase, 3',5'-Cyclic-GMP,Phosphodiesterase, 3,5-Cyclic GMP,Phosphodiesterases, 3',5'-Cyclic-GMP

Related Publications

H J Glander, and D Dettmer
January 1994, Lung,
H J Glander, and D Dettmer
November 2001, The Journal of allergy and clinical immunology,
H J Glander, and D Dettmer
January 1973, Advances in cyclic nucleotide research,
H J Glander, and D Dettmer
January 1984, Advances in cyclic nucleotide and protein phosphorylation research,
H J Glander, and D Dettmer
January 1977, Advances in cyclic nucleotide research,
H J Glander, and D Dettmer
January 1984, Advances in cyclic nucleotide and protein phosphorylation research,
H J Glander, and D Dettmer
September 1994, Molecular pharmacology,
H J Glander, and D Dettmer
October 1991, Human reproduction (Oxford, England),
Copied contents to your clipboard!