Beta-adrenergic receptors and salivary gland secretion during aging. 1992

G Rajakumar, and M M Koller, and P J Scarpace
Geriatric Research, Education and Clinical Center, Department of Veteran Affairs Medical Center, Gainesville, Florida 32608-1197.

Beta-adrenergic signal transduction is primarily responsible for the control of the protein secretions by salivary cells. To examine the relationship between beta-adrenergic signal transduction and beta-adrenergic agonist-stimulated salivary secretion, we simultaneously assessed beta-adrenergic receptor number and pilocarpine-isoproterenol-stimulated salivary flow and secreted proteins in parotid and submandibular glands from 3-, 12- and 24-month-old female NNIA F-344 rats. There were no age-related changes in the density of beta-adrenergic receptors in the parotid gland or in the submandibular gland. In the parotid gland there was a significant increase in saliva flow rate in the oldest age group and no changes in the amount of total proteins secreted over 30 min. However, when normalized to gland weight, flow rate was unchanged and the amount of total secreted proteins decreased with age. In the submandibular gland there were age-related increases in both absolute volume and total secreted protein, but when normalized to gland weight there were no longer changes with age. Changes in flow rate were paralleled by reciprocal changes in protein secretory function such that changes in the salivary protein concentrations for the most part were unchanged with age for both the parotid and the submandibular gland. These parameters were compared to our previous data on adenylate cyclase activity, and collectively, these data suggest that in the submandibular gland salivary secretory function does not correlate with changes in beta-adrenergic receptor density or isoproterenol-stimulated adenylate cyclase activity.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D010862 Pilocarpine A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. Isopilocarpine,Isoptocarpine,Ocusert,Pilocarpine Hydrochloride,Pilocarpine Mononitrate, (3S-cis)-Isomer,Pilocarpine Nitrate,Pilocarpine, Monohydrochloride, (3S-cis)-Isomer,Salagen,Hydrochloride, Pilocarpine,Nitrate, Pilocarpine
D010869 Pindolol A moderately lipophilic beta blocker (ADRENERGIC BETA-ANTAGONISTS). It is non-cardioselective and has intrinsic sympathomimetic actions, but little membrane-stabilizing activity. (From Martindale, The Extra Pharmocopoeia, 30th ed, p638) Prindolol,LB-46,Visken,LB 46,LB46
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012469 Salivary Glands Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND). Gland, Salivary,Glands, Salivary,Salivary Gland

Related Publications

G Rajakumar, and M M Koller, and P J Scarpace
May 1989, Journal of the American Geriatrics Society,
G Rajakumar, and M M Koller, and P J Scarpace
February 1981, Mechanisms of ageing and development,
G Rajakumar, and M M Koller, and P J Scarpace
June 1981, Biochimica et biophysica acta,
G Rajakumar, and M M Koller, and P J Scarpace
September 1981, The Journal of pharmacology and experimental therapeutics,
G Rajakumar, and M M Koller, and P J Scarpace
April 1986, Gerodontics,
G Rajakumar, and M M Koller, and P J Scarpace
May 1979, Biochimica et biophysica acta,
G Rajakumar, and M M Koller, and P J Scarpace
October 1969, Surgery,
G Rajakumar, and M M Koller, and P J Scarpace
June 1985, Biochemical pharmacology,
G Rajakumar, and M M Koller, and P J Scarpace
January 1988, Neurobiology of aging,
G Rajakumar, and M M Koller, and P J Scarpace
January 1981, Mechanisms of ageing and development,
Copied contents to your clipboard!