Cardiac muscle fiber force versus length determined by a cardiac muscle crossbridge model. 1992

T W Taylor, and Y Goto, and H Suga
National Cardiovascular Center Research Institute, Osaka, Japan.

A mathematical model incorporating Huxley's sliding filament crossbridge muscle model coupled with parallel and series elastic components was simulated to examine force-length relations under different external calcium concentrations. Several researchers have determined experimentally in both papillary muscle preparations and in situ heart experiments that the calcium concentration (or effective concentration from inotropic agents) will affect the strength and convexity of the cardiac muscle fiber force-length relations. Simulations were performed over a several-order-of-magnitude range of calcium concentrations in isometric contractions and these showed that the force-length curve convexity was changed. Simulation results demonstrated that increasing the stiffness in the model contractile element or series elasticity element did not change the force-length convexity. Increasing the series elasticity element stiffness did slightly change the shape of the force-length curve. The model predicts that the curve convexity changes as a result of the calcium-troponin interactions.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

T W Taylor, and Y Goto, and H Suga
April 2004, American journal of physiology. Heart and circulatory physiology,
T W Taylor, and Y Goto, and H Suga
February 1980, The Journal of physiology,
T W Taylor, and Y Goto, and H Suga
January 2010, Advances in experimental medicine and biology,
T W Taylor, and Y Goto, and H Suga
May 1983, The American journal of physiology,
T W Taylor, and Y Goto, and H Suga
February 2003, Journal of biomechanical engineering,
T W Taylor, and Y Goto, and H Suga
March 2005, Journal of structural biology,
T W Taylor, and Y Goto, and H Suga
June 1994, Japanese circulation journal,
T W Taylor, and Y Goto, and H Suga
August 1974, The American journal of physiology,
T W Taylor, and Y Goto, and H Suga
December 2007, The Journal of physiology,
Copied contents to your clipboard!