Methylene blue inhibits hypoxic cerebral vasodilation in awake sheep. 1992

J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
Department of Physiology, School of Medicine and Biomedical Sciences, University, Buffalo, New York 14214.

Cerebral vasodilation in hypoxia may involve endothelium-derived relaxing factor-nitric oxide. Methylene blue (MB), an in vitro inhibitor of soluble guanylate cyclase, was injected intravenously into six adult ewes instrumented chronically with left ventricular, aortic, and sagittal sinus catheters. In normoxia, MB (0.5 mg/kg) did not alter cerebral blood flow (CBF, measured with 15-microns radiolabeled microspheres), cerebral O2 uptake, mean arterial pressure (MAP), heart rate, cerebral lactate release, or cerebral O2 extraction fraction (OEF). After 1 h of normobaric poikilocapnic hypoxia (arterial PO2 40 Torr, arterial O2 saturation 50%), CBF increased from 51 +/- 5.8 to 142 +/- 18.8 ml.min-1 x 100 g-1, cerebral O2 uptake from 3.5 +/- 0.25 to 4.7 +/- 0.41 ml.min-1 x 100 g-1, cerebral lactate release from 2 +/- 10 to 100 +/- 50 mumol.min- x 100 g-1, and heart rate from 107 +/- 5 to 155 +/- 9 beats/min (P < 0.01). MAP and OEF were unchanged from 91 +/- 3 mmHg and 48 +/- 4%, respectively. In hypoxia, 30 min after MB (0.5 mg/kg), CBF declined to 79.3 +/- 11.7 ml.min-1 x 100 g-1 (P < 0.01), brain O2 uptake (4.3 +/- 0.9 ml.min-1 x 100 g-1) and heart rate (133 +/- 9 beats/min) remained elevated, cerebral lactate release became negative (-155 +/- 60 mumol.min-1 x 100 g-1, P < 0.01), OEF increased to 57 +/- 3% (P < 0.01), and MAP (93 +/- 5 mmHg) was unchanged. The sheep became behaviorally depressed, probably because of global cerebral ischemia. These results may be related to interference with a guanylate cyclase-dependent mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008751 Methylene Blue A compound consisting of dark green crystals or crystalline powder, having a bronze-like luster. Solutions in water or alcohol have a deep blue color. Methylene blue is used as a bacteriologic stain and as an indicator. It inhibits GUANYLATE CYCLASE, and has been used to treat cyanide poisoning and to lower levels of METHEMOGLOBIN. Methylthionine Chloride,Swiss Blue,Basic Blue 9,Chromosmon,Methylene Blue N,Methylthioninium Chloride,Urolene Blue,Blue 9, Basic,Blue N, Methylene,Blue, Methylene,Blue, Swiss,Blue, Urolene
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion

Related Publications

J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
August 1990, The Journal of pharmacology and experimental therapeutics,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
November 2001, Acta anaesthesiologica Scandinavica,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
February 2001, Critical care medicine,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
October 1994, British journal of anaesthesia,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
October 1997, Anesthesia and analgesia,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
February 1991, The American journal of physiology,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
September 1984, Journal of veterinary pharmacology and therapeutics,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
January 2003, Critical care medicine,
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
August 1991, Journal of applied physiology (Bethesda, Md. : 1985),
J Iwamoto, and M Yoshinaga, and S P Yang, and E Krasney, and J Krasney
June 2016, Journal of infection in developing countries,
Copied contents to your clipboard!