Effects of naltrindole and nor-binaltorphimine treatment on antinociception induced by sub-acute selective mu opioid receptor blockade. 1992

M J Walker, and A D Le, and C X Poulos
Addiction Research Foundation, Toronto, Ont., Canada.

When administered repeatedly, in conjunction with hot plate testing, naloxone and naltrexone have the paradoxical effect of producing antinociception in rats and mice. Recently, we have found that the sub-acute selective blockade of mu opioid receptors leads to the development of antinociception and an augmentation of kappa receptor-mediated antinociception. In this study, acute delta/kappa antagonist treatment produced a significant decrease in paw lick latency in rats displaying antinociception induced by sub-acute mu blockade, however, the response level of these animals was still significantly above the baseline. In addition, rats receiving sub-acute combined mu and delta antagonist treatment took longer to develop an antinociceptive response than those treated with a mu antagonist alone. Sub-acute selective blockade of kappa or delta opioid receptors had no overall effect on paw lick latency during the course of 5 days of hot plate testing. The results indicate that delta receptor activity may play a role in the antinociception induced by sub-acute mu blockade. However, while delta antagonist treatment effected the expression, it did not completely attenuate the antinociception induced by sub-acute mu blockade suggesting that there is still a significant non-opioid component to this analgesic response. The results of a final experiment, in which acute delta antagonist treatment had no effect on antinociception induced by repeated systemic injections of naloxone, supported this hypothesis.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008297 Male Males
D009019 Morphinans Compounds based on a partially saturated iminoethanophenanthrene, which can be described as ethylimino-bridged benzo-decahydronaphthalenes. They include some of the OPIOIDS found in PAPAVER that are used as ANALGESICS. Morphinan
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017450 Receptors, Opioid, mu A class of opioid receptors recognized by its pharmacological profile. Mu opioid receptors bind, in decreasing order of affinity, endorphins, dynorphins, met-enkephalin, and leu-enkephalin. They have also been shown to be molecular receptors for morphine. Morphine Receptors,Opioid Receptors, mu,Receptors, Morphine,Receptors, mu,Receptors, mu Opioid,mu Receptors,Morphine Receptor,mu Opioid Receptor,mu Receptor,Opioid Receptor, mu,Receptor, Morphine,Receptor, mu,Receptor, mu Opioid,mu Opioid Receptors
D017465 Receptors, Opioid, delta A class of opioid receptors recognized by its pharmacological profile. Delta opioid receptors bind endorphins and enkephalins with approximately equal affinity and have less affinity for dynorphins. Opioid Receptors, delta,Receptors, delta,Receptors, delta Opioid,delta Receptors,delta Opioid Receptor,delta Receptor,Opioid Receptor, delta,Receptor, delta,Receptor, delta Opioid,delta Opioid Receptors

Related Publications

M J Walker, and A D Le, and C X Poulos
March 1987, Life sciences,
M J Walker, and A D Le, and C X Poulos
May 1992, European journal of pharmacology,
M J Walker, and A D Le, and C X Poulos
November 1990, Brain research,
M J Walker, and A D Le, and C X Poulos
December 1999, The Journal of pharmacology and experimental therapeutics,
M J Walker, and A D Le, and C X Poulos
June 1995, Molecular pharmacology,
M J Walker, and A D Le, and C X Poulos
July 1988, The Journal of pharmacology and experimental therapeutics,
M J Walker, and A D Le, and C X Poulos
August 2007, Alcoholism, clinical and experimental research,
M J Walker, and A D Le, and C X Poulos
October 1998, European journal of pharmacology,
M J Walker, and A D Le, and C X Poulos
December 1993, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!