Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. 1992

C D Skory, and P K Chang, and J Cary, and J E Linz
Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana 70179-0687.

DNA isolated from the wild-type aflatoxin-producing (Afl+) fungus Aspergillus parasiticus NRRL 5862 was used to construct a cosmid genomic DNA library employing the homologous gene (pyrG) encoding orotidine monophosphate decarboxylase for selection of fungal transformants. The cosmid library was transformed into an Afl- mutant, A. parasiticus CS10 (ver-1 wh-1 pyrG), deficient in the conversion of the aflatoxin biosynthetic intermediate versicolorin A to sterigmatocystin. One pyrG+ Afl+ transformant was identified. DNA fragments from this transformant, recovered by marker rescue, contained part of the cosmid vector including the pyrG gene, the ampr gene, and a piece of the original genomic insert DNA. Transformation of these rescued DNA fragments into A. parasiticus CS10 resulted in production of wild-type levels of aflatoxin and abundant formation of sclerotia. The gene responsible for this complementation (ver-1) was identified by Northern RNA analysis and transformation with subcloned DNA fragments. The approximate locations of transcription initiation and polyadenylation sites of ver-1 were determined by an RNase protection assay and cDNA sequence analysis. The predicted amino acid sequence, deduced from the ver-1 genomic and cDNA nucleotide sequences, was compared with the EMBL and GenBank data bases. The search revealed striking similarity with Streptomyces ketoreductases involved in polyketide biosynthesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009964 Orotidine-5'-Phosphate Decarboxylase Orotidine-5'-phosphate carboxy-lyase. Catalyzes the decarboxylation of orotidylic acid to yield uridylic acid in the final step of the pyrimidine nucleotide biosynthesis pathway. EC 4.1.1.23. Orotidine Phosphate Carboxy-Lyase,Orotidylate Decarboxylase,OMP Decarboxylase,Orotidine 5 Phosphate Decarboxylase,Orotidine 5' Phosphate Decarboxylase,Orotidine-5-Phosphate Decarboxylase,Carboxy-Lyase, Orotidine Phosphate,Decarboxylase, OMP,Decarboxylase, Orotidine-5'-Phosphate,Decarboxylase, Orotidine-5-Phosphate,Decarboxylase, Orotidylate,Orotidine Phosphate Carboxy Lyase,Phosphate Carboxy-Lyase, Orotidine
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D000348 Aflatoxins Furano-furano-benzopyrans that are produced by ASPERGILLUS from STERIGMATOCYSTIN. They are structurally related to COUMARINS and easily oxidized to an epoxide form to become ALKYLATING AGENTS. Members of the group include AFLATOXIN B1; aflatoxin B2, aflatoxin G1, aflatoxin G2; AFLATOXIN M1; and aflatoxin M2. Aflatoxin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000880 Anthraquinones Compounds based on ANTHRACENES which contain two KETONES in any position. Substitutions can be in any position except on the ketone groups. Anthracenedione,Anthracenediones,Anthranoid,Anthraquinone,Anthraquinone Compound,Anthraquinone Derivative,Dianthraquinones,Dianthrones,Anthranoids,Anthraquinone Compounds,Anthraquinone Derivatives,Compound, Anthraquinone,Derivative, Anthraquinone
D001230 Aspergillus A genus of mitosporic fungi containing about 100 species and eleven different teleomorphs in the family Trichocomaceae.

Related Publications

C D Skory, and P K Chang, and J Cary, and J E Linz
January 1976, Journal of agricultural and food chemistry,
C D Skory, and P K Chang, and J Cary, and J E Linz
June 1973, Biochemical and biophysical research communications,
C D Skory, and P K Chang, and J Cary, and J E Linz
December 2005, Applied and environmental microbiology,
C D Skory, and P K Chang, and J Cary, and J E Linz
April 1990, Mycopathologia,
C D Skory, and P K Chang, and J Cary, and J E Linz
June 1972, Biochemical and biophysical research communications,
C D Skory, and P K Chang, and J Cary, and J E Linz
May 1976, Applied and environmental microbiology,
Copied contents to your clipboard!