TVR and vibration-induced timing of motor impulses in the human jaw elevator muscles. 1976

K E Hagbarth, and G Hellsing, and L Löfstedt

In order to investigate myotatic reflex involvement in jaw muscle control, an analysis was made of the motor responses induced by mechanical vibration (120-160 Hz) of the jaw elevator muscles in healthy subjects. As seen in torque measurements and mean-voltage electromyographic (EMG) recordings, the vibration caused involuntary reciprocal changes in jaw muscle tone, the contraction force increasing in jaw elevators and decreasing in antagonistic jaw opening muscles. This tonic vibration reflex (TVR) elicited from the jaw elevators exhibited many characteristics similar to those previously described for limb muscle tonic vibration reflexes: it varied in strength from one subject to the next independently of the briskness of the jaw elevator tendon jerks; it had a gradual onset with successive recruitment of jaw elevator motor units firing largely out of phase with one another and at rates much lower than the vibration frequency; it was susceptible to voluntary control--when allowed visual feed-back from the torque meter all subjects were able to suppress the TVR and keep mean contraction force constant. The results indicate that with respect to the tonic motor response to sustained inflow in the Ia afferent nerve fibres, the jaw elevators do not differ markedly from other skeletal muscles. Independently of whether a TVR was present or not, the vibration caused a timing of the motor unit discharges in the jaw elevators that could not be controlled voluntarily and that showed up in gross EMG recordings as a marked grouping of discharges synchronous with each wave of vibration. A similar but less distinct grouping of the gross EMG pattern was seen in limb muscles exposed to vibration, the dispersion increasing with the peripheral conduction distances of the reflex arcs. It is suggested that contrary to the TVR, which depends on the sustained mean level of the Ia afferent input, the timing phenomenon depends, like the tendon jerk, on the degree of synchrony in the afferent Ia volleys. Monosynaptic projections may well be involved in the dynamic timing of motor discharges during tonic firing, but this does not imply that the TVR or the tonic stretch reflex is dependent upon such projections.

UI MeSH Term Description Entries
D008297 Male Males
D008410 Masticatory Muscles Muscles arising in the zygomatic arch that close the jaw. Their nerve supply is masseteric from the mandibular division of the trigeminal nerve. (From Stedman, 25th ed) Masticatory Muscle,Muscle, Masticatory,Muscles, Masticatory
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D011999 Recruitment, Neurophysiological The spread of response if stimulation is prolonged. (Campbell's Psychiatric Dictionary, 8th ed.) Recruitment, Motor Unit,Motor Unit Recruitment,Neurophysiological Recruitment
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D005152 Facial Muscles Muscles of facial expression or mimetic muscles that include the numerous muscles supplied by the facial nerve that are attached to and move the skin of the face. (From Stedman, 25th ed) Mimetic Muscles,Facial Muscle,Mimetic Muscle,Muscle, Facial,Muscle, Mimetic,Muscles, Facial,Muscles, Mimetic
D005260 Female Females

Related Publications

K E Hagbarth, and G Hellsing, and L Löfstedt
October 2005, Journal of oral rehabilitation,
K E Hagbarth, and G Hellsing, and L Löfstedt
January 1978, Archives of oral biology,
K E Hagbarth, and G Hellsing, and L Löfstedt
December 1978, Scandinavian journal of dental research,
K E Hagbarth, and G Hellsing, and L Löfstedt
August 2008, Journal of oral rehabilitation,
K E Hagbarth, and G Hellsing, and L Löfstedt
July 1984, Journal of oral rehabilitation,
K E Hagbarth, and G Hellsing, and L Löfstedt
August 1999, European journal of orthodontics,
K E Hagbarth, and G Hellsing, and L Löfstedt
December 1978, Australian dental journal,
K E Hagbarth, and G Hellsing, and L Löfstedt
May 2002, Synapse (New York, N.Y.),
K E Hagbarth, and G Hellsing, and L Löfstedt
August 1993, Archives of oral biology,
K E Hagbarth, and G Hellsing, and L Löfstedt
August 1966, Brain research,
Copied contents to your clipboard!