Molecular comparison of monocot and dicot U1 and U2 snRNAs. 1992

M A Musci, and D B Egeland, and M A Schuler
Department of Plant Biology, University of Illinois, Urbana 61801.

To elucidate differences between the pre-mRNA splicing components in monocots and dicots, we have cloned and characterized several U1 and U2 snRNA sequence variants expressed in wheat seedling nuclei. Primer extension sequencing on wheat and pea snRNA populations has demonstrated that two 5'-terminal nucleotides found in most other U1 snRNAs are missing/modified in many plant U1 snRNAs. Comparison of the wheat U1 and U2 snRNA variants with their counterparts expressed in pea nuclei has defined regions of structural divergence between monocot and dicot U1 and U2 snRNAs. The U1 and U2 snRNA sequences involved in RNA:RNA interaction with pre-mRNAs are absolutely conserved. Significant differences occur between wheat and pea U1 snRNAs in stem I and II structures implicated in the binding of U1-specific proteins suggesting that the monocot and dicot U1-specific snRNP proteins differ in their binding specificities. Stem III structures, which are required in mammalian systems for splicing complex formation but not for U1-specific protein binding, differ more extensively than stems I, II, or IV. In U2 snRNAs, the sequence differences between these two species are primarily localized in stem III and in stem IV which has been implicated in snRNP protein binding. These differences suggest that monocot and dicot U1 and U2 snRNPs represent distinct entities that may have monocot- and dicot-specific snRNP protein variants associated with each snRNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012342 RNA, Small Nuclear Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors. Low Molecular Weight Nuclear RNA,Small Nuclear RNA,snRNA,Chromatin-Associated RNA,Small Molecular Weight RNA,Chromatin Associated RNA,RNA, Chromatin-Associated
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

M A Musci, and D B Egeland, and M A Schuler
September 1989, Gene,
M A Musci, and D B Egeland, and M A Schuler
March 2015, Genomics data,
M A Musci, and D B Egeland, and M A Schuler
June 1989, The Plant cell,
M A Musci, and D B Egeland, and M A Schuler
February 2008, Nucleic acids research,
M A Musci, and D B Egeland, and M A Schuler
September 2018, Plant science : an international journal of experimental plant biology,
M A Musci, and D B Egeland, and M A Schuler
July 1988, Nucleic acids research,
M A Musci, and D B Egeland, and M A Schuler
October 1994, Genetics,
M A Musci, and D B Egeland, and M A Schuler
November 1989, Nucleic acids research,
Copied contents to your clipboard!