Oxidation and reduction of copper ions in catalytic reactions of Rhus laccase. 1976

T Nakamura

1) It was demonstrated by colorimetric as well as EPR measurements that the native (aerobic, resting state) Rhus vernicifera laccase contains both Cu2+ and Cu+ (total Cu content was 4.0 gram atoms/mole). The ratio of Cu2+ to total Cu in laccase varied (42-90%) in samples of latex collected from various districts. The absorption maximum at 615 nm was proportional to the content of total Cu in the enzyme sample. Laccase activity was found to almost parallel the content of the Cu2+ form. The oxidized minus reduced difference absorbance of the enzyme at 330 nm shoulder was proportional to the amount of Cu2+. 2) Steady state level of oxidation of laccase copper during the laccase copper catalytic action, the rates of reduction by substrates and the oxidation by O2 were determined by following absorbance changes at 615 and 330 nm by the stopped flow method. 3) All the results from titrimetric and kinetic experiments were consistent with the laccase model previously proposed by Makino and Ogura in which a laccase molecule contains 1 Cu(615) and 3 Cu(330). Our expanded model states that a laccase sample originally contains active as well as inactive enzymes. In the active enzyme, Cu ions are reactive to O2 but in the inactive enzyme, Cu can be oxidized only by oxidizing agents such as H2O2 or ferricyanide, or by a slow intermolecular electron transfer from Cu(615) to the active enzyme. In both species of enzyme rapid reduction of Cu2+ ions by substrate takes place. In comparative studies of the reactivities of Cu ions in various copper proteins, we would like to suggest that oxidatic activity of a copper protein is due to the Cu+ form of the enzyme ions with O2.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004156 Catechol Oxidase An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1. Diphenol Oxidases,Diphenol Oxidase,Polyphenol Oxidase,Polyphenoloxidase,Oxidase, Catechol,Oxidase, Diphenol,Oxidase, Polyphenol,Oxidases, Diphenol
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012251 Toxicodendron A genus (formerly part of Rhus genus) of shrubs, vines, or trees that yields a highly allergenic oleoresin which causes a severe contact dermatitis (DERMATITIS, TOXICODENDRON). The most toxic species are Toxicodendron vernix (poison sumac), T. diversilobum (poison oak), and T. radicans (poison ivy). T. vernicifera yields a useful varnish from which certain enzymes (laccases) are obtained. Ivy, Poison,Oak, Poison,Poison Ivy,Poison Oak,Poison Sumac,Sumac, Poison,Rhus toxicodendron,Ivies, Poison,Oaks, Poison,Poison Ivies,Poison Oaks,Poison Sumacs,Rhus toxicodendrons,Sumacs, Poison,Toxicodendrons,toxicodendron, Rhus
Copied contents to your clipboard!