Acquired Mls-1a-like clonal deletion in Mls-1b mice. 1992

M Papiernik, and C Pontoux, and S Gisselbrecht
Institut Nationale de la Santé et de la Recherche Médicale (INSERM) U345, Hôpital Necker, Paris, France.

BALB/c mice (H-2d, Mls-1b) from one colony progressively modify their T cell repertoire during aging, by deleting T cells that express products of the V beta 6 and V beta 8.1 genes of the T cell receptor. Clonal deletion occurs only in 50% of mice between 27 and 43 wk of age, affecting thymus, spleen, and lymph node T cells. The phenomenon is progressive and seems to affect nearly all thymuses between 14 and 19 wk of age. CD4+CD8- mature T cells are more affected than CD4-CD8+ cells. In the thymus, deletion occurs at the stage of immature J11d+ cells expressing a high level of V beta 6, while J11d+V beta 6low-expressing cells are not modified. Clonal deletion is thus an early phenomenon that deletes cells of the immature generative compartment in the thymus. This Mls-1a-like clonal deletion is associated neither with the expression of an Mls-1a-like antigen that could be identified in mixed lymphocyte reaction in vitro, nor with the presence of Mtv-7, the endogenous mouse mammary tumor virus (MMTV) proviral loci. Spleen cells, bone marrow cells, and total thymocytes injected into newborn thymuses cannot induce V beta 6+ cell deletion. However, newborn thymuses grafted into old BALB/c mice behave like their recipients, suggesting that a new antigen, present in these old BALB/c mice, is indeed able to induce an Mls-1a-like clonal deletion. As other BALB/c colonies tested do not behave in same way, the hypothesis of a new exogenous deleting factor rather than a genetic transmission is likely. This may suggest that acquired clonal deletion is a more common phenomenon than expected, and may be the spontaneous reaction of the immune system to the introduction of a new retrovirus or other superantigen.

UI MeSH Term Description Entries
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte

Related Publications

M Papiernik, and C Pontoux, and S Gisselbrecht
August 1994, Journal of immunology (Baltimore, Md. : 1950),
M Papiernik, and C Pontoux, and S Gisselbrecht
June 1992, European journal of immunology,
M Papiernik, and C Pontoux, and S Gisselbrecht
February 1993, International immunology,
M Papiernik, and C Pontoux, and S Gisselbrecht
April 1991, Journal of immunology (Baltimore, Md. : 1950),
M Papiernik, and C Pontoux, and S Gisselbrecht
June 1990, Nature,
M Papiernik, and C Pontoux, and S Gisselbrecht
August 1991, Journal of immunology (Baltimore, Md. : 1950),
M Papiernik, and C Pontoux, and S Gisselbrecht
November 1992, The Journal of experimental medicine,
Copied contents to your clipboard!