Calcium ionophore treatment impairs the sterol-mediated suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 3-hydroxy-3-methylglutaryl-coenzyme A synthase, and farnesyl diphosphate synthetase. 1992

D J Wilkin, and P A Edwards
Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90024-1679.

We report that the sterol-mediated suppression of the mRNA levels of three cholesterogenic enzymes, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and farnesyl diphosphate (FPP) synthetase is partially overcome by the calcium ionophore A23187. Addition of A23187 to the human monocytic leukemia cell line THP-1 in the presence of fetal calf serum led to rapid increases in mRNA concentration of up to 40-fold for HMG-CoA synthase and 15-fold for HMG-CoA reductase with little or no change in FPP synthetase mRNA levels. Treatment of HepG2 cells with A23187 resulted in approximately 2-4-fold increases in the mRNA levels for these three enzymes. The increases in HMG-CoA synthase and HMG-CoA reductase mRNAs were maximal after treatment of THP-1 cells with 10 micrograms/ml A23187 for 3 h. The stimulation was blocked by actinomycin D but not by cycloheximide treatment. Ionophore treatment had no effect on the half-lives of the mRNAs for HMG-CoA reductase and HMG-CoA synthase. Surprisingly, the addition of A23187 to THP-1 cells incubated in the presence of 25-hydroxycholesterol and mevalonic acid also led to significant increases in the mRNA levels for HMG-CoA reductase and HMG-CoA synthase. Finally, the stimulation of these mRNA levels by A23187 was reduced in cells in which protein kinase C had been inactivated by preincubation of the cells with a phorbol ester. Taken together, these data suggest that A23187 treatment results in increased transcription of HMG-CoA reductase, HMG-CoA synthase, and, in some cell types, FPP synthetase by a mechanism that does not involve de novo protein synthesis. We speculate that A23187 treatment results in the modification of a trans-acting factor(s) which is common for the transcription of all these genes.

UI MeSH Term Description Entries
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004336 Drug Antagonism Phenomena and pharmaceutics of compounds that inhibit the function of agonists (DRUG AGONISM) and inverse agonists (DRUG INVERSE AGONISM) for a specific receptor. On their own, antagonists produce no effect by themselves to a receptor, and are said to have neither intrinsic activity nor efficacy. Antagonism, Drug,Antagonisms, Drug,Drug Antagonisms
D006903 Hydroxymethylglutaryl CoA Reductases Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID. HMG CoA Reductases,3-Hydroxy-3-methylglutaryl CoA Reductase,HMG CoA Reductase,Hydroxymethylglutaryl CoA Reductase,3 Hydroxy 3 methylglutaryl CoA Reductase,CoA Reductase, 3-Hydroxy-3-methylglutaryl,Reductase, 3-Hydroxy-3-methylglutaryl CoA
D006904 Hydroxymethylglutaryl-CoA Synthase An enzyme that catalyzes the synthesis of hydroxymethylglutaryl-CoA from acetyl-CoA and acetoacetyl-CoA. This is a key enzyme in steroid biosynthesis. This enzyme was formerly listed as EC 4.1.3.5. HMG CoA Synthase,3-hydroxy-3-methylglutaryl-coenzyme A synthase,HMG-CoA synthase,3 hydroxy 3 methylglutaryl coenzyme A synthase,A synthase, 3-hydroxy-3-methylglutaryl-coenzyme,CoA Synthase, HMG,Hydroxymethylglutaryl CoA Synthase,Synthase, HMG CoA,Synthase, Hydroxymethylglutaryl-CoA,synthase, 3-hydroxy-3-methylglutaryl-coenzyme A,synthase, HMG-CoA

Related Publications

D J Wilkin, and P A Edwards
June 2012, Journal of cellular biochemistry,
D J Wilkin, and P A Edwards
November 2001, Molecular carcinogenesis,
D J Wilkin, and P A Edwards
July 1994, Proceedings of the National Academy of Sciences of the United States of America,
D J Wilkin, and P A Edwards
February 1976, Biochemical and biophysical research communications,
D J Wilkin, and P A Edwards
January 1983, Molecular and cellular biochemistry,
Copied contents to your clipboard!