Downstream of the homeotic genes. 1992

D J Andrew, and M P Scott
Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427.

The homeotic genes of Drosophila melanogaster determine which structures form in each of the body segments. Disrupting the function of the homeotic genes causes body parts found in one domain of the animal to be replaced by body parts normally found elsewhere. Each of the homeotic genes encodes a protein, or a closely related family of proteins, which is capable of binding DNA and controlling the transcriptional activities of downstream genes. The homeotic genes are in the middle of a complex regulatory network, and many of the genes that control homeotic expression have been well characterized. However, very little is known about what comes after the homeotic genes, the downstream genes whose activities are regulated by the homeotic genes. Here, we review the known relationships between the homeotic proteins and the few identified target genes. The details of these interactions may be characteristic and may thus guide the search for additional targets.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D J Andrew, and M P Scott
January 2007, Fly,
D J Andrew, and M P Scott
May 1997, BioEssays : news and reviews in molecular, cellular and developmental biology,
D J Andrew, and M P Scott
January 1990, Reproduction, nutrition, development,
D J Andrew, and M P Scott
August 1993, Current opinion in genetics & development,
D J Andrew, and M P Scott
January 1995, Development (Cambridge, England),
D J Andrew, and M P Scott
January 1986, Annual review of genetics,
D J Andrew, and M P Scott
February 1987, Seikagaku. The Journal of Japanese Biochemical Society,
D J Andrew, and M P Scott
July 1994, Cell,
D J Andrew, and M P Scott
January 1994, Zhurnal evoliutsionnoi biokhimii i fiziologii,
Copied contents to your clipboard!