Identification of the active site residues in dipeptidyl peptidase IV by affinity labeling and site-directed mutagenesis. 1992

S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
Department of Biochemistry, Fukuoka University School of Medicine, Japan.

The active site of dipeptidyl peptidase IV (DPPIV) was examined by chemical modification and site-directed mutagenesis. Purified DPPIV was covalently modified with [3H]diisopropyl fluorophosphate (DFP). The radiolabeled DPPIV was digested with lysyl endopeptidase, and the peptides were separated by high-performance liquid chromatography. A single 3H-containing peptide was obtained and analyzed for amino acid sequence and radioactivity distribution. A comparison of the determined sequence with the predicted primary structure of DPPIV [Ogata, S., Misumi, Y., & Ikehara, Y. (1989) J. Biol. Chem. 264, 3596-3601] revealed that [3H]DFP was bound to Ser631 within the sequence Gly629-Trp-Ser-Tyr-Gly633, which corresponds to the consensus sequence Gly-X-Ser-X-Gly proposed for serine proteases. To further identify the essential residues in the active-site sequence, we modified the DPPIV cDNA by site-directed mutagenesis to encode its variants. Expression of the mutagenized cDNAs in COS-1 cells demonstrated that any single substitution of Gly629, Ser631, or Gly633 with other residues resulted in the complete loss of the enzyme activity and DFP binding. Although substitution of Trp630----Glu or Tyr632----Phe caused no effect on the enzyme activity, that of Tyr632----Leu or Gly abolished the activity. These results indicate that the sequence Gly-X-Ser-(Tyr)-Gly is essential for the expression of the DPPIV activity.

UI MeSH Term Description Entries
D007531 Isoflurophate A di-isopropyl-fluorophosphate which is an irreversible cholinesterase inhibitor used to investigate the NERVOUS SYSTEM. DFP,Diisopropylfluorophosphate,Fluostigmine,Bis(1-methylethyl) Phosphorofluoridate,Di-isopropylphosphorofluoridate,Diisopropylphosphofluoridate,Dyflos,Floropryl,Fluorostigmine,Di isopropylphosphorofluoridate
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004152 Dipeptidyl-Peptidases and Tripeptidyl-Peptidases A subclass of exopeptidases that includes enzymes which cleave either two or three AMINO ACIDS from the end of a peptide chain. Dipeptidyl Peptidase,Dipeptidyl Peptidases,Dipeptidylpeptide Hydrolase,Tripeptidyl-Peptidase,Dipeptidylpeptide Hydrolases,Tripeptidyl-Peptidases,Dipeptidyl Peptidases and Tripeptidyl Peptidases,Hydrolase, Dipeptidylpeptide,Peptidase, Dipeptidyl,Tripeptidyl Peptidase,Tripeptidyl Peptidases,Tripeptidyl-Peptidases and Dipeptidyl-Peptidases
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
July 1990, The Journal of biological chemistry,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
July 1995, FEBS letters,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
February 1995, Biochemistry,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
July 1991, The Journal of biological chemistry,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
March 1993, The Journal of biological chemistry,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
June 1995, Journal of biochemistry,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
August 1996, The Journal of biological chemistry,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
July 2002, Journal of the American Chemical Society,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
April 1997, Journal of virology,
S Ogata, and Y Misumi, and E Tsuji, and N Takami, and K Oda, and Y Ikehara
July 2005, The FEBS journal,
Copied contents to your clipboard!