Antp-type homeodomains have distinct DNA binding specificities that correlate with their different regulatory functions in embryos. 1992

S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
Department of Biology, Yale University, New Haven, CT 06511.

Much of the functional specificity of Drosophila homeotic selector proteins, in their ability to regulate specific genes and to assign specific segmental identities, appears to map within their different, but closely related homeodomains. For example, the Drosophila Dfd and human HOX4B (Hox 4.2) proteins, which have extensive structural similarity only in their respective homeodomains, both specifically activate the Dfd promoter. In contrast, a chimeric Dfd protein containing the Ubx homeodomain (Dfd/Ubx) specifically activates the Antp P1 promoter, which is normally targeted by Ubx. Using a variety of DNA binding assays, we find significant differences in DNA binding preferences between the Dfd, Dfd/Ubx and Ubx proteins when Dfd and Antp upstream regulatory sequences are used as binding substrates. No significant differences in DNA binding specificity were detected between the human HOX4B (Hox 4.2) and Drosophila Dfd proteins. All of these full-length proteins bound as monomers to high affinity DNA binding sites, and interference assays indicate that they interact with DNA in a way that is very similar to homeodomain polypeptides. These experiments indicate that the ninth amino acid of the recognition helix of the homeodomain, which is glutamine in all four of these Antp-type homeodomain proteins, is not sufficient to determine their DNA binding specificities. The good correlation between the in vitro DNA binding preferences of these four Antp-type homeodomain proteins and their ability to specifically regulate a Dfd enhancer element in the embryo, suggests that the modest binding differences that distinguish them make an important contribution to their unique regulatory specificities.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011196 Potassium Permanganate Permanganic acid (HMnO4), potassium salt. A highly oxidative, water-soluble compound with purple crystals, and a sweet taste. (From McGraw-Hill Dictionary of Scientific and Technical Information, 4th ed) Permanganate, Potassium
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer

Related Publications

S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
July 1992, Nucleic acids research,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
November 2010, Proceedings of the National Academy of Sciences of the United States of America,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
September 2013, BMC genomics,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
May 1995, Science (New York, N.Y.),
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
January 2000, Molecular and cellular biology,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
December 1993, The EMBO journal,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
December 1984, Cell,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
May 1992, The Journal of experimental medicine,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
April 2014, Biochimica et biophysica acta,
S Dessain, and C T Gross, and M A Kuziora, and W McGinnis
July 1994, Molecular and cellular biology,
Copied contents to your clipboard!