Dual ultrastructural localization of enkephalin and tyrosine hydroxylase immunoreactivity in the rat ventral tegmental area: multiple substrates for opiate-dopamine interactions. 1992

S R Sesack, and V M Pickel
Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021.

Endogenous opiates modulate activity in the mesocorticolimbic dopaminergic system, and this interaction is thought to underlie major aspects of motoric, reward-seeking, and stress-coping behaviors. We sought to determine the ultrastructural substrate for this modulatory action at the level of dopaminergic perikarya in the rat ventral tegmental area (VTA). Using a dual-labeling, immunoperoxidase and immunogold-silver method, we localized antisera directed against leu5-enkephalin (ENK) and the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) in acrolein-fixed sections through the VTA. ENK-like immunoreactivity (ENK-LI) was visualized within unmyelinated axons and in axon terminals. In terminals, ENK-LI was densely localized to one or more dense-cored vesicles and either densely or lightly detected surrounding small clear vesicles. Immunoreactive dense-cored vesicles were occasionally associated with the presynaptic specialization but were more frequently detected at distant sites along the plasmalemmal surface, often in apposition to astrocytic processes. ENK-immunoreactive terminals formed both symmetric and asymmetric synapses, most frequently on large proximal dendrites. Direct appositions without glial separation were also detected between terminals containing ENK-LI and other ENK-labeled or unlabeled terminals. In contrast to ENK-LI, immunolabeling for TH was primarily detected within perikarya and dendrites in the VTA. Of the ENK-immunoreactive terminals that formed synaptic contacts in single sections, approximately 50-60% were in association with TH-labeled dendrites. The remainder formed synapses on dendrites lacking detectable immunoreactivity for TH. Multiple ENK-immunoreactive terminals occasionally formed convergent synaptic contacts on single TH-labeled or unlabeled dendrites. Furthermore, individual ENK-labeled terminals sometimes formed divergent contacts on two TH-labeled or unlabeled dendrites. When a single ENK-immunoreactive terminal made dual synaptic contacts on TH-labeled dendrites, the latter were usually in close apposition to one another. These findings represent the first ultrastructural demonstration that opioid peptide-containing terminals provide a direct synaptic input to dopaminergic, as well as nondopaminergic, neurons in the VTA. In addition, the morphological evidence suggests that endogenous opioid peptides (1) may be released from nonsynaptic sites, (2) may modulate the release of transmitters from other terminals, and/or (3) may synchronize the activity of multiple neuronal targets in the VTA. These results provide a number of morphological substrates through which opiates may directly or indirectly regulate activity in mesocorticolimbic dopaminergic pathways.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S R Sesack, and V M Pickel
September 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S R Sesack, and V M Pickel
June 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S R Sesack, and V M Pickel
July 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S R Sesack, and V M Pickel
August 1986, The American journal of physiology,
S R Sesack, and V M Pickel
March 1989, The Journal of comparative neurology,
Copied contents to your clipboard!