Hormones increase oxygen uptake in periportal and pericentral regions of the liver lobule. 1992

T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
Department of Pharmacology, University of North Carolina, Chapel Hill 27599.

The effect of several hormones known to alter intracellular free Ca2+ on rates of O2 uptake in periportal and pericentral regions of the liver lobule was studied in the perfused liver. Regional O2 uptake was measured by stopping the flow and monitoring the decrease in O2 concentration. When perfusion was in the anterograde direction, basal rates of O2 uptake were two to three times higher in periportal than in pericentral regions, and phosphorylase alpha activity, which increases as a function of intracellular free Ca2+ levels, was higher in periportal regions. In contrast, when perfusion was in the retrograde direction, rates of O2 uptake were two to three times greater in pericentral regions. Infusion of epinephrine (0.1 microM) or angiotensin II (5 nM) increased the rate of O2 uptake nearly exclusively in downstream areas of the lobule where O2 tension was low. When perfusions were in the anterograde direction, epinephrine increased phosphorylase alpha activity significantly only in pericentral regions. Stimulation of O2 uptake by epinephrine was blocked by the alpha-adrenergic receptor blocker phentolamine (1 microM) but not by the beta-receptor blocker propranolol. Thus hormones that increase intracellular calcium stimulate O2 uptake predominantly in regions of the liver lobule where O2 tension is lowest, supporting the hypothesis that oxygen tension regulates O2 uptake in the liver via mechanisms involving intracellular free Ca2+.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010762 Phosphorylase a The active form of GLYCOGEN PHOSPHORYLASE that is derived from the phosphorylation of PHOSPHORYLASE B. Phosphorylase a is deactivated via hydrolysis of phosphoserine by PHOSPHORYLASE PHOSPHATASE to form PHOSPHORYLASE B.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic

Related Publications

T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
June 1986, The American journal of physiology,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
February 1987, Archives of biochemistry and biophysics,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
February 1987, European journal of biochemistry,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
October 1985, The American journal of physiology,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
May 1984, Molecular pharmacology,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
January 1984, Molecular pharmacology,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
June 1983, The American journal of physiology,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
June 1986, The Biochemical journal,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
January 1988, Drug metabolism reviews,
T Matsumura, and H Yoshihara, and R Jeffs, and Y Takei, and S Nukina, and T Hijioka, and R K Evans, and F C Kauffman, and R G Thurman
September 1982, Molecular pharmacology,
Copied contents to your clipboard!