Increased oncogenic potential of ErbB is associated with the loss of a COOH-terminal domain serine phosphorylation site. 1992

S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester 01605.

The erbB oncogene encodes an altered form of the epidermal growth factor (EGF) receptor that lacks the extracellular ligand binding domain. This oncogene is exclusively leukemogenic. However, an increase in oncogenic potential and a broadening of the tissue specificity of tumor formation occurs after retroviral transduction of erbB. The increased oncogenic potential correlates with structural alterations within the erbB gene. One common event is the deletion of a serine phosphorylation site located within the COOH-terminal domain. This site of phosphorylation has been demonstrated to be required for EGF-induced desensitization of signaling by the EGF receptor (Countaway, J. L., Nairn, A. C., and Davis, R.J. (1992) J. Biol. Chem. 267, 1129-1140). Here we show that the mutation of erbB at this negative regulatory serine phosphorylation site causes fibroblast transformation in vitro and is associated with an increased oncogenic potential in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids

Related Publications

S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
August 1992, The Journal of biological chemistry,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
November 1991, Journal of virology,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
August 1999, Oncogene,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
April 2002, Molecules and cells,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
November 2014, American journal of physiology. Cell physiology,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
February 1999, Journal of neurochemistry,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
August 1990, Biochemistry,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
May 2008, Journal of the American Society for Mass Spectrometry,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
March 1995, The Journal of cell biology,
S J Theroux, and C Taglienti-Sian, and N Nair, and J L Countaway, and H L Robinson, and R J Davis
November 1994, Oncogene,
Copied contents to your clipboard!