Chemoreceptor A-fibres in the human carotid body contain tyrosine hydroxylase and neurofilament immunoreactivity. 1992

W Kummer, and J O Habeck
Institute for Anatomy and Cell Biology, University of Heidelberg, F.R.G.

Previous retrograde tracing studies on rat and guinea-pig showed a projection of sensory tyrosine hydroxylase-immunoreactive neurons to the region of the carotid bifurcation via the carotid sinus nerve. In the present study, focussing on the sensory innervation of the human carotid body, antisera to tyrosine hydroxylase and other catecholamine synthesizing enzymes were applied for an immunohistochemical investigation of carotid bodies obtained at autopsy. In addition, an array of antisera directed to non-enzyme antigens known to be present in viscero-afferent neurons were incorporated in the study. The glomic lobules consisting of glomus cells and sustentacular cells contained a variable number of enzyme-immunoreactive glomus cells. Arteries were supplied by nerve fibres displaying the full phenotype of sympathetic noradrenergic axons, i.e. immunoreactivity to tyrosine hydroxylase, aromatic-L-amino-acid-decarboxylase and dopamine-beta-hydroxylase. The glomic lobules, however, were densely innervated by tyrosine hydroxylase-immunoreactive axons lacking immunoreactivity to aromatic-L-amino-acid-decarboxylase and dopamine-beta-hydroxylase. These fibres reacted with neurofilament 160kD-antibody but were devoid of immunoreactivity to all neuropeptides tested (calcitonin gene-related peptide, somatostatin, substance P). Ultrastructurally, tyrosine hydroxylase/neurofilament 160kD-immunoreactive axons gave rise to large axonal swellings filled with mitochondria and vesicles, and established extensive contacts to glomus cells. Nerve bundles surrounded by a perineural sheath contained both myelinated (2.0-2.8 microns in diameter) and unmyelinated (0.14-3.0 microns) tyrosine hydroxylase-immunoreactive axons. Most of the unmyelinated immunoreactive axons were running singularly within a Schwann cell-sheath. Judged from the pattern of immunoreactivities as well as their preterminal and terminal ultrastructure, tyrosine hydroxylase-immunoreactive axons innervating glomus cells are of sensory origin. Although final proof by retrograde tracing cannot be presented in man, this conclusion is supported by experimental evidence in laboratory animals. The myelinated immunoreactive axons correspond to chemoreceptor A-fibres whereas the classification of the large unmyelinated immunoreactive axons has yet to be established. The lack of immunoreactivity to the dopamine-synthesizing enzyme, aromatic-L-amino-acid-decarboxylase, in this fibre type does not support the view of dopamine being the primary transmitter of chemoreceptor afferents.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

W Kummer, and J O Habeck
September 2010, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
W Kummer, and J O Habeck
January 1977, Advances in biochemical psychopharmacology,
W Kummer, and J O Habeck
January 1980, Developmental neuroscience,
W Kummer, and J O Habeck
October 1972, The Journal of physiology,
W Kummer, and J O Habeck
January 2006, Peptides,
W Kummer, and J O Habeck
August 1990, Neuroscience letters,
Copied contents to your clipboard!