Physical map of Campylobacter jejuni TGH9011 and localization of 10 genetic markers by use of pulsed-field gel electrophoresis. 1992

N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
Department of Microbiology, University of Toronto, Ontario, Canada.

The physical map of Campylobacter jejuni TGH9011 (ATCC 43430) was constructed by mapping the three restriction enzyme sites SacII (CCGCGG), SalI (GTCGAC), and SmaI (CCCGGG) on the genome of C. jejuni by using pulsed-field gel electrophoresis and Southern hybridization. A total of 25 restriction enzyme sites were mapped onto the C. jejuni chromosome. The size of the genome was reevaluated and was shown to be 1,812.5 kb. Ten C. jejuni genetic markers that have been isolated in our laboratory were mapped to specific restriction enzyme fragments. Furthermore, we have accurately mapped one of the three rRNA operons (rrnA) and have demonstrated a separation of the 16S and 23S rRNA-encoding sequences in one of the rRNA operons.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II
D016123 Campylobacter jejuni A species of bacteria that resemble small tightly coiled spirals. Its organisms are known to cause abortion in sheep and fever and enteritis in man and may be associated with enteric diseases of calves, lambs, and other animals. Campylobacter fetus subsp. jejuni,Vibrio hepaticus,Vibrio jejuni
D016521 Electrophoresis, Gel, Pulsed-Field Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length. Electrophoresis, Gel, Pulsed-Field Gradient,Gel Electrophoresis, Pulsed-Field,Contour-Clamped Homogeneous-Field Gel Electrophoresis,Electrophoresis, Gel, Pulsed Field,Electrophoresis, Pulsed Field Gel,Field Inversion Gel Electrophoresis,Orthogonal Field Alternation Gel Electrophoresis,Orthogonal-Field Alternation-Gel Electrophoresis,Pulsed Field Gradient Gel Electrophoresis,Pulsed-Field Gel Electrophoresis,Pulsed-Field Gradient Gel Electrophoresis,Alternation-Gel Electrophoresis, Orthogonal-Field,Contour Clamped Homogeneous Field Gel Electrophoresis,Electrophoresis, Orthogonal-Field Alternation-Gel,Electrophoresis, Pulsed-Field Gel,Gel Electrophoresis, Pulsed Field,Pulsed Field Gel Electrophoresis

Related Publications

N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
January 2015, Methods in molecular biology (Clifton, N.J.),
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
June 2006, Veterinary microbiology,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
February 2007, Journal of clinical microbiology,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
May 2001, Journal of clinical microbiology,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
January 2006, Molecular diagnosis & therapy,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
June 1998, Journal of clinical microbiology,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
September 1990, Journal of bacteriology,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
October 2011, Foodborne pathogens and disease,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
November 2009, Journal of clinical microbiology,
N W Kim, and H Bingham, and R Khawaja, and H Louie, and E Hani, and K Neote, and V L Chan
May 1991, The Journal of infectious diseases,
Copied contents to your clipboard!